It is a similar concept here with combinatorial chem- solution) to see which compounds fit into the enistry. By predicting the colossal varieties of compounds that can be formed from a reaction, a large amount of useful yet slightly different compounds can be obtained from a single reaction. (Refer to the figure below.) This is particularly important for pharmaceutical companies who wish to manufacture a number of similar compounds quickly and cheaply.

In practice, huge 'libraries' containing every feasible configuration of the resulting compounds are created using combinatorial methods. Computer analysis is then carried out to find out which compounds are useful and appropriate separation methods are designed.

For other applications, chemists use combinatorial chemistry to generate large quantities of different compounds quickly (to increase chemical diversity) and test them with a single reagent (e.g. enzyme
zymes' active sites. It is now being used to shorten the time needed to develop new drugs, which is especially important with the current increase in deadly antibiotic-resistant pathogens.

These are just the tip of the iceberg when it comes to mathematical applications in real life. I could go on and talk about how mathematics plays a part in human behaviour, or how it could possibly trigger cellular division, but these are all intriguing questions left for the reader to explore. Mathematics is not just a universal language' or a rigorous subject about proofs and abstract symbols; it is also one of exciting applications and groundbreaking discoveries. The next time you flip through your science or chemistry textbooks, think about the mathematics behind each and every statement - you'd be surprised by just how useful it could be.

Here, R1 to R4 denote different substituents (additional chains of atoms)

Regiomontanus' Angle Maximization A Classical Construction Approach
 Li Kwing Hei 11D

You have been waiting for ages for this day - Valen- But wait. Which seats should you pick for the movtine's Day! Your eyes gleam with joy as you visualize ie? Your palms grow sweaty as you ponder this chaltaking the love of your life to the cinema for a movie. lenging probm. Wher should you sit such You want everything to be perfect After all you are going to propose to her tonight. enging problem. Where should you sit such that the movie screen appears largest? The middle column obviously, but which row? Apparently, it is time for Mathematics to save the day.

Story aside, let's construct a diagram for the situa tion. In Figure 0.1, A and B represent the top and the bottom of the movie screen respectively. Denote any chosen column of seats by L and your seat by C on L. Since you would like the movie screen to appear the largest, you want to locate C on L such that $\angle A C B$ is largest.
ndeed, this problem was first posed in the 15th century by a German mathematician called Johannes Müller. Johannes Müller was not interested in finding the best seats with his girlfriend in a cin ema, but he was curious to find the best place to stand to observe a painting. To tackle this problem there are a number of ways, many of which involve complicated trigonometric functions. Since half-an gle formulas and differentiation may be slightly in timidating, we shall solve the problem with classical construction.

Part 1:The Basics

Figure 1.1

Before we dive straight into the solution, we shall mention some basic results in geometry. In Figure 1.1, $P Q=X Y$ and $P R=X Z$. If $\angle Q P R<\angle Y X Z$ which side is longer, $Q R$ or $Y Z$? It is obvious that $Y Z$ is longer. In fact, this can be proved with the cosine law. Note that
$Q R^{2}=P Q^{2}+P R^{2}-2(P Q)(P R) \cos \angle Q P R$ $Y Z^{2}=X Y^{2}+X Z^{2}-2(X Y)(X Z) \cos \angle Y X Z$

Since $\cos x^{\circ}$ is a decreasing function on the interva $[0,180], \cos \angle Q P R>\cos \angle Y X Z$. It follows from the above equations that $Q R^{2}<Y Z^{2}$ and $Q R<Y Z$. This is commonly known as the Hinge theorem. The con verse of the Hinge theorem also holds: if $Q R<Y Z$, then $\angle Q P R<\angle Y X Z$
Let's have a look at another useful result. In Figure $1.2, S T V$ is a circle. $S T$ is produced to U such that $U V$ is tangent to the circle at V.

Consider $\triangle T U V$ and $\triangle V U S$

$\angle T U V$	$=\angle S U V$
$\angle T V U$	$=\angle U S V$
$($ common $\angle T U V$	$\sim \triangle V U S$
$\frac{T U}{V U}$	$=\frac{U V}{U S}$

$U T \cdot U S=U V^{2}$
he common value in the last equation is known as the power of U with respect to the circle $S T V$. Con versely, if $U T \cdot U S=U V^{2}$ and T is a point of internal division of $U S$, then a circle passing through S, T and V can be constructed such that $U V$ is tangent to the circle at V.

Try it out! In the figure, $A B C D$ is a quadrilateral inscribed in the circle. $A D$ and $B C$ are extended to meet at P. Can you prove that $A P \cdot D P=B P \cdot C P$?
The proof can be found on Page 7.

In Figure 2.1, A and B are two points above a straight line L. $A B$ is produced to meet L at E. Two circles passing through A and B are drawn to touch $L . L$ touches the left circle and the right circle at C and D respectively. C lies on the left of E and D lies on the right of E. Let F be a moving point on L. Suppose F is on the left of E and $A F$ cuts the left circle at G, as shown in Figure 2.2.

Consider $\triangle B F G$
$\angle A F B+\angle F B G=\angle A G B \quad($ ext.\angle of $\Delta)$

$$
\begin{aligned}
& \angle A G B>\angle A F B \\
& \angle A G B=\angle A C B \quad(\angle 8 \text { in the same segment })
\end{aligned}
$$

$$
\angle A C B>\angle A F B
$$

But what if F lies on the right of E ? Suppose F is on the right of E and $A F$ cuts the right circle at G, as shown in Figure 2.3.

Figure 2.3

Consider $\triangle B F G$.
$\angle A F B+\angle F B G=\angle A G B \quad($ ext. \angle of $\Delta)$

$$
\angle A G B>\angle A F B
$$

$$
\angle A G B=\angle A D B
$$

$$
\angle A D B>\angle A F B
$$

Combining the cases, as F moves along $L, \angle A F B$ is maximum when F is at either C or D. Next, we shall locate C and D, the points of tangency between L and the two circles passing through A and B, by construct ing these two circles which touch L. This geometric construction problem is known as Apollonius' prob lem with two points and a line.

Part 3: Apollonius' Problem with Two Points and a Line

Figure 3.1
In Figure 3.1, A and B are two points above L. We want to construct two circles passing through A and B to touch L. How could that be done?

To solve the problem, $A B$ is extended to meet L at E. There are many ways to compare two angles, and we Construct any circle passing through A and B. (For ex- shall use one of the simplest. In Figure 4.1, C and D are ample, the circle with diameter $A B$ can be chosen.) the centres of the two arcs of equal radii. The arc cen Let the centre of the circle be H and construct a circle tred at C cuts $A C$ and $B C$ at I and J respectively while with diameter $H E$. Denote any of the two points of in- the arc centred at D cuts $B D$ and $A D$ at M and N re tersection of the two circles by K. Then $\angle E K H=90^{\circ} \quad$ spectively. Hence $C I=D M$ and $C J=D N$. Applying and $E K$ is tangent to the circle $A B K$ at K. Consider- the Hinge theorem and its converse introduced in Part ing the power of E with respect to the circle $A B K$, we $1, I J>M N$ if and only if $\angle A C B>\angle A D B$. Thus com have $E B \cdot E A=E K^{2}$. Finally, construct a circle centred paring $\angle A C B$ and $\angle A D B$ is equivalent to comparing at E with radius $E K$ to intersect L at C and D. Since $I J$ and $M N$. Since it is straightforward to compare the $E C=E K$, we have $E B \cdot E A=E C^{2}$. It follows that a lengths of two line segments using a pair of compass circle passing through A, B and C can be constructed es, the problem is solved. such that $E C$ is tangent to the circle $A B C$ at C. Similarly, a circle passing through A, B and D can be constructed Now that we have successfully found the best seats, such that $E D$ is tangent to the circle $A B D$ at D.

It has been shown in Part 2 that $\angle A F B$ is maximum when F is at either C or D. After locating C and D, it remains to compare $\angle A C B$ and $\angle A D B$.

Part 4: Comparing the Two Angles

$A B$ here are still a few questions unanswered. What if $A B$ is parallel to L ? In that case, we cannot extend $A B$ to meet L. What if A and B are not on the same side of L ? As always, these questions are left as exercises for the readers.

Your lips uncontrollably curl to form a smile after you have found the perfect seats in the cinema. You check your pockets, and sure enough, the engagement ring is there. Your clothes are spotless. Everything is ready yet there is still one thing missing. Where do you find a girlfriend?
$\begin{array}{ll}\begin{array}{ll}\text { Answer to "Try it out!" on Page 5: } \\ \angle A P B=\angle C P D & \text { (common } \angle \text {) } \\ \angle A B P & =\angle C D P\end{array} & \text { (ext. } \angle \text {, cyclic quad.) } \\ \triangle A P B \sim \triangle C P D & \text { (AA) } \\ \frac{A P}{C P} & =\frac{B P}{D P}\end{array} \quad$ (corr. sides, $\sim \triangle \mathrm{s}$) $)$

Do you know?

The expression "if and only if" is a logical connective between statements. It is represented by the symbol " \Leftrightarrow " or the abbreviation "iff". The phrase " P if and only if Q " would imply that Q is necessary and sufficient for P. Making it easier to understand, the phrase would mean that both of the statements "if P, then Q " and "if Q, then P " hold true. The truth table of $P \Leftrightarrow Q$ is as follows:

P	Q	$P \Rightarrow Q$	$P \Leftarrow Q$	$P \Leftrightarrow Q$
T	T	T	T	T
T	F	F	T	F
F	T	T	F	F
F	F	T	T	T

It has been proved in Part 1 that $I J>M N$ if $\angle A C B>\angle A D B$ and $\angle A C B>\angle A D B$ if $I J>M N$. Therefore we can conclude that $I J>M N$ if and only if $\angle A C B>\angle A D B$

