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We present Coneris, the first higher-order concurrent separation logic for reasoning about error probability

bounds of higher-order concurrent probabilistic programs with higher-order state. To support modular

reasoning about concurrent (non-probabilistic) program modules, state-of-the-art program logics internalize

the classic notion of linearizability within the logic through the concept of logical atomicity. In Coneris, we

extend this idea to probabilistic concurrent program modules by capturing a novel notion of randomized logical
atomicity within the logic. To do so, Coneris utilizes presampling tapes and a novel probabilistic update modality
to describe how state is changed probabilistically at linearization points. We demonstrate this approach by

means of smaller synthetic examples and larger case studies. All of the presented results, including the

meta-theory, have been mechanized in the Rocq prover and the Iris separation logic framework.

1 Introduction
Probabilistic data structures, such as approximate counters, skip lists, or Bloom filters are widely

used in concurrent programming. These data structures can improve time and space efficiency

compared to their deterministic counterparts. However, some probabilistic data structures may

return wrong results with a small probability. Analyzing and ensuring this probability of error is

sufficiently small is essential for using these data structures. But this analysis is challenging because

probabilistic programs often have unintuitive behaviors, which are only made more complicated

when probabilistic behaviors are combined with concurrency. Because randomness and concurrency

both introduce non-determinism, any analysis must take into account the large range of possible

outcomes that can arise from this non-determinism.

For just concurrency alone without randomness, a number of verification techniques have

been developed that abstract away from concurrent non-determinism. For example, Concurrent

Separation Logic (CSL) [33] allows for threads in a concurrent program to be verified in a local
way, without having to consider the effects of interference from other threads at every step of

execution. A key feature of modern concurrent separation logics is support for proving that data

structures are logically atomic [15, 23, 27, 34]. Logical atomicity allows clients to reason as if a

concurrent data structure had a logical state that is updated atomically at a single point in time

during each operation. This internalizes the idea of linearizability, a standard notion of correctness

for concurrent data structures, and enables modular and compositional proofs.

It is natural to consider whether similar techniques can be applied to reason about randomized
concurrent data structures. Prior work has explored extending concurrent separation logic to

the randomized setting [17, 35, 38]. However, none of these prior logics support compositional

reasoning about data structures because they lack support for reasoning about logical atomicity.

Indeed, even developing a suitable notion of what logical atomicity would look like in the presence of
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randomization is challenging. Whereas prior efforts developing non-randomized logical atomicitiy

could draw inspiration and intuition from the notion of linearizability, there is no widely-accepted

analogue of linearizability that is suitable for randomized data structures. Indeed, prior work has

shown ways in which standard notions of linearizability do not suffice when clients of a data

structure can make randomized choices [18].

In this paper, we develop an appropriate notion of randomized logical atomicity in the context

of Coneris, a new concurrent separation logic. Coneris is a probabilistic higher-order concurrent
separation logic for reasoning about error bounds of ConcRandML programs, a ML-like language

with support for discrete random sampling, unstructured concurrency, higher-order functions, and

higher-order dynamically-allocated local state.

On the surface level, Coneris retains all the standard rules of higher-order separation logic for

concurrent programs, along with modern features like expressive impredicative invariants and

custom ghost resources. From the probabilistic side, Coneris inherits two kinds of separation logic

resources from previous logics for reasoning about probabilities, specifically presampling tapes
first introduced in Clutch [20], and error credits first introduced in Eris [3]. The former are used to

reason about random choices that a program will take in the future, while the latter are used to

track an upper bound on the probability of some error occurring during execution.

Using its higher-order features, Coneris encodes randomized logical atomicity by adapting the

earlier HOCAP [34] approach to logical atomicity. To do so, we introduce a novel probabilistic
update modality, written as |⇝⇝ 𝑃 . Intuitively, the modality is used to describe a probabilistic logical

update to a piece of ghost state of the program. In particular, we can use it to reason as if the

randomness that the program uses is atomically drawn at one single point in time, which is crucial

in writing and proving modular specifications.

We demonstrate the flexibility of our approach by verifying a selection of data structures. For

example, we verify the correctness of a concurrent hash function. The hash module is subsequently

used in an efficient concurrent implementation of a Bloom filter, and we derive a strict error bound

for a client program that uses the Bloom filter. These examples utilize rich language features such

as higher-order functions and local state, and display non-trivial interactions between concurrency

and probability. As far as we are aware, even verifying the simpler examples are out-of-scope for

previous techniques, let alone reasoning about them modularly.

Contributions. In summary, we make the following contributions:

• The first concurrent and probabilistic higher-order separation logic for reasoning about

error bounds of programs written in ConcRandML, a probabilistic concurrent higher-order

programming language with higher-order references.

• A novel probabilistic update modality that we use to capture a probabilistic notion of logical

atomicity.

• An extension of the HOCAP approach to the probabilistic setting that allows us to write

and prove modular specifications of randomized concurrent data structures.

• A selection of case studies showcasing our approach to modular verification of higher-order

concurrent probabilistic data structures.

• Full mechanization of all results in the Rocq prover [36], using the Iris separation logic

framework [25] and the Coquelicot real analysis library [13].

Outline. In §2, we demonstrate how Coneris is used to reason about programs that feature both

concurrency and probability, we and highlight some of the key challenges that arise from this

combination. We then present the syntax and semantics of our language ConcRandML in §3. In §4,

we present a collection of program logic rules and we show how to apply them to reason about a
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Modular Reasoning about Error Bounds for Concurrent Probabilistic Programs 3

concurrent randomized counter module in §5. Subsequently in §6, we showcase Coneris on a range

of concurrent probabilistic data structure examples. Finally, we discuss related work and conclude

with ideas for future work in §8 and §9, respectively.

2 Motivation and Technical Challenges
We first recall the features of the Eris logic [3] for reasoning about error bounds of sequential

programs, then we discuss how Coneris extends these ideas to the concurrent setting, illustrating

some of the challenges that arise when reasoning about error bounds in the presence of concurrency.

Sequential Error Reasoning with Error Credits. Eris is a separation logic that introduces a

new assertion called error credits written E (𝜀), where 0 ≤ 𝜀 ≤ 1 is a real number. This assertion

represents a budget upper bounding the probability that a specification can fail to hold. In particular,

an Eris Hoare triple of the form {𝑃 ∗ E (𝜀)} 𝑒 {𝑥 . 𝑄} implies that if we execute 𝑒 in a state satisfying

𝑃 , then the probability that 𝑒 crashes or returns a value 𝑥 that violates 𝑄 is at most 𝜀.

To illustrate how the E (𝜀) assertion is used, consider the following program as a simple example:

twoAdd ≜ let 𝑙 = ref 0 in 𝑙 ← (! 𝑙 + rand 3); 𝑙 ← (! 𝑙 + rand 3); ! 𝑙

Here rand𝑁 is a probabilistic construct that samples a value uniformly from {0, . . . , 𝑁 }. In particular,
rand 3 returns a random number from the set {0, . . . , 3} with probability 1/4 each. The twoAdd
program first allocates a reference 𝑙 initialized to 0, then adds the result of a probabilistic sampling

rand 3 to the value in 𝑙 twice, and concludes by reading the number in 𝑙 .

Suppose we want to prove an upper bound on the probability that the program returns 0. This

happens only if both calls to rand 3 return 0, which occurs with probability at most 1/4 · 1/4 = 1/16.
We can capture this as a specification in Eris by proving {E (1/16)} twoAdd {𝑥 . 𝑥 > 0} .

Eris provides 3 key rules for working with error credits:
1

err-split

E (𝜀1 + 𝜀2)

E (𝜀1) ∗ E (𝜀2)
=====================

ht-rand-exp

E𝔘𝑁 [F ] ≤ 𝜀
{E (𝜀)} rand𝑁 {𝑛. E (F (𝑛)) ∗ 𝑛 ∈ {0..𝑁 }}

err-1

E (1)
False

The first rule says that error credits can be split and joined together. The second rule says that

when the program makes a randomized choice, we can re-distribute error credits along different

branches of the randomized outcome, so long as the expected value or average amount of error

credit does not increase. Finally, the third rule says that an error credit of 1 implies False, i.e., we
can deduce anything, which intuitively follows from the idea that an upper bound of probability 1

is trivial. Figure 1 shows a proof outline using these rules to derive the Hoare triple stated above

for twoAdd. The key steps in this proof are to apply the ht-rand-exp rule twice to reason about

the two rand 3 statements in the proof. The first time the rule is applied, we start with E (1/16),
and instantiate F in the rule to be the function F (𝑛) ≜ 1

4
· [𝑛 = 0] where [𝑃] evaluates to 1 if 𝑃 (𝑎)

is true and to 0 otherwise. That is, we end up with E (1/4) in the case where rand 3 returned 0, and

E (0) otherwise. For the latter cases, the remainder of the proof is trivial, since the value in 𝑙 is

already greater than 0. For the former case, on the next call to rand 3, we again apply ht-rand-exp,

setting F ′ (𝑚) ≜ [𝑛 = 0 ∧𝑚 = 0]. Thus, when rand 3 again returns 0, we end up with E (1). In this

case, 𝑙 still contains 0, but we can use err-1 to finish the proof. For the other cases, 𝑙 will be greater

than 0, so the postcondition follows directly.

1
We write inference rules with a double horizontal line to mean the rule can be applied in either direction.
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{E
(
1

16

)
}

let 𝑙 = ref 0 in

{𝑙 ↦→ 0 ∗ E
(
1

16

)
}

𝑙 ← (! 𝑙 + rand 3); (apply ht-rand-exp using F(𝑥 ) ≜ 1

4
· [𝑥 = 0])

{∃𝑛. 𝑙 ↦→ 𝑛 ∗
(
(𝑛 = 0 ∧ E

(
1

4

)
) ∨ 𝑛 ≠ 0

)
}

𝑙 ← (! 𝑙 + rand 3); (apply ht-rand-exp using F′ (𝑥 ) ≜ [𝑛 = 0 ∧ 𝑥 = 0])

{∃𝑚. 𝑙 ↦→𝑚 ∗ ((𝑚 = 0 ∧ E (1)) ∨𝑚 ≠ 0)}
{∃𝑚. 𝑙 ↦→𝑚 ∗𝑚 ≠ 0} (discharge case𝑚 = 0 using err-1 from E (1))

! 𝑙

{𝑥 . 𝑥 > 0}

Fig. 1. Proof outline for the Hoare triple {E (1/16)} twoAdd {𝑥 . 𝑥 > 0} .

Concurrent Error Bounds in Coneris. Coneris generalizes Eris’s error credit reasoning to
the concurrent setting. To illustrate some of the key ideas and challenges in doing so, consider the

following concurrent variation of the twoAdd example:

conTwoAdd ≜ let 𝑙 = ref 0 in (faa 𝑙 (rand 3) | | | faa 𝑙 (rand 3)) ; ! 𝑙
Here | | | represents parallel composition of two threads, and faa 𝑙 𝑛 is a fetch-and-add command

that atomically adds 𝑛 to the value stored in 𝑙 and returns the value prior to the addition. Intuitively,

no matter which order the faa commands execute in the two threads, the probability that the final

! 𝑙 at the end of the program returns 0 is again bounded above by 1/16.
Coneris allows us to show this by proving a Hoare triple of a similar form as the one we saw

for twoAdd. More precisely, in Coneris, the intuitive meaning of a Hoare triple {𝑃 ∗ E (𝜀)} 𝑒 {𝑄} is
that, “for all possible schedulings of threads, if 𝑃 holds, then the probability that 𝑒 reaches an error

state or returns a value that violates 𝑄 is at most 𝜀”.

All of Eris’s proof rules for error credits also hold in Coneris. To reason about parallel execution,

Coneris additionally has the familiar parallel composition rule from concurrent separation logic:

{𝑃1} 𝑒1 {𝑣1 . 𝑄1 𝑣1} {𝑃2} 𝑒2 {𝑣2. 𝑄2 𝑣2}
{𝑃1 ∗ 𝑃2} 𝑒1 | | | 𝑒2 {(𝑣1, 𝑣2). 𝑄1 𝑣1 ∗ 𝑄2 𝑣2}

ht-par-comp

To apply this rule we have to divide up the precondition into two separate parts, 𝑃1 and 𝑃2, and

show that they suffice as preconditions for the two threads 𝑒1 and 𝑒2, respectively. We already saw

with err-split that we can split error credits, so for the conTwoAdd example we might try to split

the initial error budget of E (1/16) in half, giving each thread E (1/32). However, we would soon

run into two issues:

(1) As in the sequential case, we want to apply ht-rand-exp to try to distribute all of the credits

to the cases where the rand 3 commands return 0. However, if each thread has E (1/32) and
applies ht-rand-exp to reason about the rand 3 it executes, then after applying the rule, it

can have at most E (1/8) for the case where the rand 3 returns 0. Combining two E (1/8) in
the post-condition of the parallel composition rule, we would end up with a total of E (2/8)
for the case where both threads add 0 to the counter. But this is not enough to apply err-1,

and so we would not be able to prove the intended postcondition.

(2) Both threads need to modify the shared location 𝑙 , so they both need to have “ownership” of

the points-to assertion for 𝑙 . However, 𝑙 ↦→ 0 ⊬ 𝑙 ↦→ 0 ∗ 𝑙 ↦→ 0, so we cannot pass ownership

of this assertion in the precondition of both threads when applying ht-par-comp.
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The second problem has a well-known solution in CSL, namely invariant assertions. Fortunately, as
we will see, it turns out that invariants also provide a solution to the first problem.

Coneris provides Iris-style invariant assertions of the form 𝐼 , which states that an assertion 𝐼 is

an invariant of program execution. These assertions support the following rules:

ht-inv-alloc{
𝐼 ∗ 𝑃

}
𝑒 {𝑄}

{𝐼 ∗ 𝑃} 𝑒 {𝑄}

inv-dup

𝐼

𝐼 ∗ 𝐼

ht-inv-open

𝑒 atomic {𝐼 ∗ 𝑃} 𝑒 {𝐼 ∗ 𝑄}{
𝐼 ∗ 𝑃

}
𝑒
{
𝐼 ∗ 𝑄

}
The first rule ht-inv-alloc says that we can allocate an invariant assertion 𝐼 if we know that 𝐼

holds in the precondition. Invariant assertions are duplicable, meaning that we can produce multiple

copies using inv-dup, so that when applying ht-par-comp, each thread can have a copy of 𝐼 in its

precondition. Finally, threads can access the assertion 𝐼 inside of the invariant using ht-inv-open,

which requires that the invariant is restablished after the atomic expression 𝑒 finishes executing.

An expression 𝑒 is atomic if it steps to a value in a single execution step.

By putting the 𝑙 ↦→ − assertion inside of an invariant 𝐼 , we can thus allow both threads to access

𝑙 by using ht-inv-open during the faa step. A standard technique in the CSL literature is to use

ghost state to encode a kind of protocol in the invariant assertion that tracks how 𝑙 can evolve

through the shared access by the two threads [27]. We omit the exact details of how this ghost state

encoding works, but at a high level, this invariant assertion would have a format like:

𝐼 ≜ (𝑙 ↦→ 0 ∗ . . . )︸           ︷︷           ︸
no thread added

∨ (∃𝑣 . 𝑙 ↦→ 𝑣 ∗ . . . )︸                ︷︷                ︸
1 thread added

∨ (∃𝑣 . 𝑙 ↦→ 𝑣 ∗ . . . )︸                ︷︷                ︸
2 threads added

where threads use ghost state to track which case of this disjunction they are in.

Our key observation is that if we now also include error credits in the invariant, then we can

additionally resolve the first issue mentioned above related to not having a sufficient number of

error credits. For example, by setting the invariant to a form like

𝐼 ≜
(
(𝑙 ↦→ 0 ∗ . . . )︸           ︷︷           ︸
no thread added

∨ (∃𝑣 . 𝑙 ↦→ 𝑣 ∗ . . . )︸                ︷︷                ︸
1 thread added

∨
(
∃𝑣 . 𝑙 ↦→ 𝑣 ∗ 𝑣 > 0 ∗ . . .

)︸                           ︷︷                           ︸
2 threads added

)
∗
( (
E (1/16) ∗ . . .

)︸              ︷︷              ︸
no thread sampled

∨
(
E (1/4) ∗ . . .

)︸             ︷︷             ︸
1 thread sampled 0

∨
(
E (1) ∗ . . .

)︸         ︷︷         ︸
2 threads sampled 0

∨
(
E (0) ∗ . . .

)︸         ︷︷         ︸
≥ 1 thread sampled non-0

)
We initially have that the invariant owns the whole error credit E (1/16). The first thread to sample

will use this E (1/16) with ht-rand-exp, ending up with E (1/4) in the case it samples 0 and E (0)
otherwise. If the first thread samples a non-zero value, then the final value in 𝑙 will be at least 0, no

matter what the second thread samples. On the other hand, if the first thread samples 0, then it will

return E (1/4) to the invariant, which will then be used by the second thread with ht-rand-exp

to get E (1) in the case that it also samples 0. At that point, we can use err-1 to exclude this case,

just as we did in the original sequential example. Of course, additional ghost state is needed to

track this more complex protocol, but modern CSLs like Iris already provide sophisticated tools for

encoding these kinds of protocols.

Although this example seems simple, to the best of our knowledge, Coneris is the first unary
program logic for randomized concurrent programs that can prove this bound of 1/16 for conTwoAdd.
Prior concurrent separation logics, even those that are specific to first-order languages [17, 38] lack

logical facilities necessary for expressing this non-trivial protocol on the shared state.

Modularity and Randomized Logical Atomicity. While placing error credits in a shared

invariant solved the problems discussed in the previous part, the solution we have shown so
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createCntr ≜ 𝜆 _. ref 0

readCntr ≜ 𝜆 𝑙 . ! 𝑙

incrCntr ≜ 𝜆 𝑙 . faa 𝑙 (rand 3)

conTwoAdd ≜ let 𝑙 = createCntr () in
(incrCntr 𝑙 | | | incrCntr 𝑙) ;
readCntr 𝑙

Fig. 2. Refactored conTwoAdd code.

far is not modular. To see this issue, imagine that we refactored the code of conTwoAdd as in

Figure 2. Here we introduce intermediate functions that encapsulate the operations performed on

the location 𝑙 . Ideally, we ought to be able to derive separate specifications for these operations,

and then use only their specifications to prove the same Hoare triple we had before for conTwoAdd.
For example, we might introduce a predicate of the form counter 𝑙 𝑛 ≜ 𝑙 ↦→ 𝑛 capturing the value

of the counter. Then, a specification for incrCntr might look like

E𝔘3
[F ] ≤ 𝜀

{counter 𝑙 𝑥 ∗ E (𝜀)} incrCntr 𝑙 {∃𝑛. counter 𝑙 (𝑥 + 𝑛) ∗ E (F (𝑛)) ∗ 𝑛 ∈ {0..3}}
which expresses the effects of adding values to the counter and also allows for averaging error

credits across the different outcomes, similarly to ht-rand-exp. However, this specification for

incrCntr is not sufficient for verifying conTwoAdd. As we saw previously for that example, we must

put the points-to assertion for 𝑙 (corresponding to counter) and the E (1/16) in an invariant. But we

cannot use ht-inv-open to open this invariant when using the above specification for incrCntr ,
because incrCntr 𝑙 is not an atomic expression.

For non-probabilistic concurrent programs, a standard solution to this problem is to derive a

specification that captures that incrCntr behaves as if it were atomic when incrementing the value

in the counter. Although several different techniques have been proposed for encoding what it

means for a function to be logically atomic, in Coneris we adapt the HOCAP [34] approach. At its

core, the idea behind HOCAP is to observe that what makes a physically atomic expression special,

in terms of the rules of the logic, is that we can open an invariant around it. Thus, to capture that an

operation behaves as if it is atomic, we need a specification style that allows for opening an invariant

at the logical point where an operation takes effect. In Iris, this is captured through the update
modality, written |⇛𝑄 which holds when 𝑄 can be derived by opening invariants. By deriving a

specification for incrCntr in which the counter assertion occurs under such an update modality in

the pre-condition, we can enable incrCntr to open invariants to get this counter assertion at the

moment when it performs the faa.
To extend this idea to the probabilistic setting, Coneris introduces a new modality, called the

probabilistic update modality |⇝⇝ , which additionally allows for error credits to be updated in an

expectation preserving way, in the style of ht-rand-exp. Intuitively, |⇝⇝ 𝑃 holds if we can make an

instantaneous probabilistic update of our resources such that the outcome satisfies 𝑃 . Compared to

the standard update modality |⇛, the probabilistic update modality can additionally redistribute
errors credits through a logical operation called tape presampling that allows clients to reason

about future probabilistic choices. By using this new modality in HOCAP-style specifications, we

are able to capture randomized logical atomicity, enabling modular reasoning about concurrent

probabilistic libraries. Because this technique requires more advanced rules of Coneris, we postpone

demonstrating it to §5.1, and first present more of the formal details of Coneris and the semantics

of ConcRandML, the concurrent programming language used to express our examples.

3 Preliminaries
In §3.1, we first recall various definitions from probability theory. We then present the syntax of

ConcRandML in §3.2 and its operational semantics in §3.3.
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3.1 Probability Theory
To account for possibly non-terminating behavior of programs, we define our operational semantics

using probability sub-distributions. A discrete subdistribution (henceforth simply distribution) on a

countable set𝐴 is a function 𝜇 : 𝐴→ [0, 1] such that

∑
𝑎∈𝐴 𝜇 (𝑎) ≤ 1. The collection of distributions

on 𝐴 is denoted by D(𝐴). The null distribution 0 : D(𝐴) is the constant function 𝜆𝑥 .0. We let

{𝑁 ..𝑀} denote the set {𝑛 ∈ N | 𝑁 ≤ 𝑛 ≤ 𝑀} and for 𝑁 ≥ 0 we let𝔘𝑁 : D(N) denote the (uniform)

distribution that returns 1/(𝑁 + 1) for every 𝑛 ∈ {0..𝑁 } and 0 otherwise. The expected value of
𝑋 : 𝐴→ [0, 1] with respect to 𝜇 is defined as E𝜇 [𝑋 ] ≜

∑
𝑎∈𝐴 𝜇 (𝑎) ·𝑋 (𝑎). Themass of 𝜇 is E𝜇 [𝜆𝑥 .1].

Given a predicate 𝑃 on 𝐴, the Iverson bracket [𝑃] evaluates to 1 if 𝑃 (𝑎) is true and to 0 otherwise,

and the probability of 𝑃 w.r.t. 𝜇 is Pr𝜇 [𝑃 ] ≜ E𝜇 [ [𝑃] ]. Distributions form a monad; we write 𝜇 ≫= 𝑓
for bind(𝑓 , 𝜇), which is defined as follows.

ret : 𝐴→ D(𝐴) bind : (𝐴→ D(𝐵)) × D(𝐴) → D(𝐵)

ret(𝑎) (𝑎′) ≜ [𝑎 = 𝑎′] bind(𝑓 , 𝜇) (𝑏) ≜
∑︁
𝑎∈𝐴

𝜇 (𝑎) · 𝑓 (𝑎) (𝑏)

3.2 The ConcRandML Language
Our examples are written in the ConcRandML language, which is an ML-style programming

language extended with probabilistic sampling and fork-based concurrency
2
. The syntax of the

language is defined by the grammar below:

𝑣,𝑤 ∈Val ::= 𝑧 ∈ Z | 𝑏 ∈ B | () | ℓ ∈ Loc | rec f x = 𝑒 | (𝑣,𝑤) | inl 𝑣 | inr 𝑣 |
𝑒 ∈ Expr ::= 𝑣 | x | 𝑒1 𝑒2 | 𝑒1 + 𝑒2 | 𝑒1 − 𝑒2 | . . . | if 𝑒 then 𝑒1 else 𝑒2 | (𝑒1, 𝑒2) | fst 𝑒 | . . .

ref 𝑒 | ! 𝑒 | 𝑒1 ← 𝑒2 | 𝑒1 [𝑒2] | rand 𝑒 | fork 𝑒 | faa 𝑒1 𝑒2
𝜎 ∈ State ::= Loc fin−⇀Val

𝜌 ∈ Cfg ::= List(Expr) × State
The syntax is mostly standard, for example, the expressions ref 𝑒 , ! 𝑒 , and 𝑒1 ← 𝑒2 allocate, load

from, and store into a reference, respectively. An array 𝑒1 can be accessed at offset 𝑒2 (for load or

store) via 𝑒1 [𝑒2] and rand𝑁 samples from the uniform distribution on {0, . . . , 𝑁 }.
Concurrency is supported via fork 𝑒 , which executes 𝑒 in a new thread, and atomic operations

which provide synchronization between threads. For example, the atomic fetch-and-add faa 𝑒1 𝑒2
instruction adds the integer 𝑒2 to the value 𝑣 stored at location 𝑒1 and returns 𝑣 .3

A program configuration 𝜌 ∈ List(Expr) × State is given by a pair containing the list of currently

executing threads and the heap modeled as a finite map from locations to values. A configuration 𝜌

is final if the first expression in the thread list is a value.

3.3 Operational Semantics
The operational semantics of ConcRandML programs is given in stages: expressions take a single

execution step, which gets lifted to thread pools by schedulers, and finally these steps are chained

together to obtain full program execution.

Expressions. The step function takes an expression (representing the currently active thread)

and the current state and produces a distribution over the new expression, new state, and a (possibly

empty) list of newly spawned threads. ConcRandML has a standard call-by-value semantics where

2
ConcRandML is also the language studied in Polaris [35], butwe consider probabilistic schedulers in addition to deterministic

ones for the full program execution. We discuss this more in §8.

3
ConcRandML also supports other atomic instructions such as atomic exchange and compare-and-swap, which we omit

here for brevity.
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steps can occur under evaluation contexts. Deterministic language constructs like if-then-else (1)

or fork 𝑒 (2) step deterministically by using the return of the distribution monad. The rand𝑁
instruction (3) uniformly associates probability 1/(𝑁 + 1) to any integer 𝑛 between 0 and 𝑁 .

step : (Expr,State) → D(Expr,State, List(Expr))

step(if true then 𝑒1 else 𝑒2, 𝜎) = ret(𝑒1, 𝜎, []) (1)

step(fork 𝑒, 𝜎) = ret((), 𝜎, [𝑒]) (2)

step(rand𝑁, 𝜎) = 𝜆 (𝑛, 𝜎, []) . 1

𝑁+1 if 𝑛 ∈ {0, . . . , 𝑁 } and 0 otherwise (3)

Thread Pools and Schedulers. The operational semantics of a configuration 𝜌 = (®𝑒, 𝜎) is
then given simply by indicating which thread amongst ®𝑒 should step, i.e., by specifying an index

𝑖 ∈ [0, |®𝑒 | − 1] and applying the step function to (𝑒𝑖 , 𝜎):

tpStep(®𝑒, 𝜎) (𝑖) ≜

0 if (®𝑒, 𝜎) is final,
ret(®𝑒, 𝜎) if 𝑒𝑖 is a value,

step(𝑒𝑖 , 𝜎) ≫= 𝜆 (𝑒′𝑖 , 𝜎 ′, ®𝑒′). ret(®𝑒 [𝑖 ↦→ 𝑒′𝑖 ] ++ ®𝑒′, 𝜎 ′) otherwise.

If 𝜌 is final, it does not step. If 𝑒𝑖 is a value, we take a stutter step. Otherwise, we update the 𝑖-th

thread with the stepped expression 𝑒′𝑖 and append the newly spawned threads ®𝑒′ to the thread pool.

A scheduler decides which thread in a configuration to step next. Formally, a (probabilistic,

stateful) scheduler is given by a transition function 𝜁 : (SchedSt ×Cfg) → D(SchedSt × N), which
takes in an internal state Ξ ∈ SchedSt and a configuration 𝜌 , and returns a distribution on its new

internal state and the index of the thread in 𝜌 to step next.

Given a configuration 𝜌 , a scheduler 𝜁 , and a scheduler state Ξ, we can now define the single

scheduler-step reduction function schStep𝜁 (Ξ, 𝜌) ∈ D(SchedSt ×Cfg) as follows:

schStep𝜁 (Ξ, 𝜌) ≜ 𝜁 (Ξ, 𝜌) ≫= 𝜆 (Ξ′, 𝑖). tpStep(𝜌, 𝑖) ≫= 𝜆 𝜌 ′ . ret(Ξ′, 𝜌 ′)

Intuitively, schStep𝜁 (Ξ, 𝜌) first evaluates 𝜁 (Ξ, 𝜌) to get a new state Ξ′ and index 𝑖 , steps the 𝑖-th

thread to obtain the configuration 𝜌 ′, and returns the new scheduler state and configuration.

The notion of scheduler we consider is quite strong. Firstly, the scheduler is probabilistic and can
update its internal state and choose the next thread to step probabilistically instead of deterministi-

cally. Secondly, the update decision of a scheduler can depend not only on its internal state, but

also on the entire view of the thread pool and the memory state. These two design choices provide

more power to the scheduler and enable us to reason about the error bounds of algorithms under a

larger and richer class of schedulers than, say, deterministic schedulers.

Program Execution. We next define 𝑛-step program execution with respect to a scheduler 𝜁 as

the following recursive function exec𝜁 ,𝑛 : (SchedSt ×Cfg) → D(Val).

exec𝜁 ,𝑛 (Ξ, 𝜌) ≜

ret 𝑣 if 𝜌 is final and 𝜌 = (𝑣 · ®𝑒, 𝜎) for some 𝑣 ∈Val,
0 if 𝑛 = 0 and 𝜌 is not final,

schStep𝜁 (Ξ, 𝜌) ≫= exec𝜁 ,𝑛−1 otherwise.

One can read exec𝜁 ,𝑛 (Ξ, 𝜌) (𝑣) as the probability of returning 𝑣 in the first thread after at most𝑛 steps

of 𝜌 under the scheduler 𝜁 initialized with the scheduler state Ξ. Finally, full program execution is

defined as the limit of exec𝜁 ,𝑛 , which exists by monotonicity and continuity:

exec𝜁 (Ξ, 𝜌) ≜ lim𝑛→∞exec𝜁 ,𝑛 (Ξ, 𝜌)

We simply write exec𝜁 𝑒 if the result is the same for all initial program and scheduler states.
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Traditionally, a program 𝜌 is safe if it never gets stuck during execution, i.e., any partial program

execution starting from 𝜌 is either a value or it can make progress. To define the appropriate notion

of safety for the probabilistic setting of ConcRandML (see Theorem 4.2), we need the following

auxiliary definition of partial program execution pexec𝜁 ,𝑛 : (SchedSt ×Cfg) → D(SchedSt ×Cfg).

pexec𝜁 ,𝑛 (Ξ, 𝜌) =
{
ret(Ξ, 𝜌) if 𝜌 is final or 𝑛 = 0,

schStep𝜁 (Ξ, 𝜌) ≫= pexec𝜁 ,𝑛−1 otherwise.

We can view pexec as a relaxation of exec which keeps probability mass on configurations that are

not final, whereas the latter only considers final configurations.

4 Logic
In this section, we dive into the rules of Coneris. We start with a glance of the syntax of the logic

and its adequacy theorem. Then, we explore the general program logic rules before discussing

presampling tapes and the probabilistic update modality.

4.1 Introduction to Coneris
The Coneris logic is built on top of the Iris base logic [25] and inherits all of the basic propositions

and their associated proof rules. This includes the later modality ⊲, the persistence modality � and

the points-to connective ℓ ↦→ 𝑣 that asserts exclusive ownership of the location ℓ storing value 𝑣 . A

selection of Coneris propositions are shown below.

𝑃,𝑄 ∈ iProp ::= True | False | 𝑃 ∧𝑄 | 𝑃 ∨𝑄 | 𝑃 ⇒ 𝑄 | ∀𝑥 . 𝑃 | ∃𝑥 . 𝑃 | 𝑃 ∗ 𝑄 | 𝑃 ∗ 𝑄 | ⊲ 𝑃 | � 𝑃 |
𝑃
𝜄 | 𝑔 𝛾 | |⇛E1 E2 𝑃 | ℓ ↦→ 𝑣 | {𝑃} 𝑒 {𝑄}E | E (𝜀) | 𝜅 ↩→ (𝑁, ®𝑛) | |⇝⇝E1 E2 𝑃 | . . .

Coneris is a separation logic and propositions denote sets of resources. 𝑃 ∗ 𝑄 holds for resources

that can be decomposed into two disjoint pieces satisfying 𝑃 and 𝑄 . The separating implication

𝑃 ∗ 𝑄 is the right adjoint of ∗ , in the sense that 𝑃 ∗ (𝑃 ∗ 𝑄) ⊢ 𝑄 . While omitted in §2, note

that invariant assertions 𝑃
𝜄
are annotated with an identifying name 𝜄 which is used to prevent

the prover from opening the same invariant twice (which is unsound). For bookkeeping purposes,

Hoare triples are annotated with the set of invariant names that the specification relies on; we omit

this mask annotation when considering the set of all invariant names ⊤.
As mentioned in §2, we internalize error bounds using the error credit assertion E (𝜀). The

presampling tape assertion 𝜅 ↩→ (𝑁, ®𝑛) is a probabilistic connective that we adapt from Clutch [20]

which plays a key role in deriving certain modular specifications. The probabilistic update modality

|⇝⇝E1 E2 𝑃 is a novelty of the Coneris logic. We further discuss these three connectives and their

role in the following section.

The meaning of the Coneris Hoare triple is captured by the adequacy theorem shown below.

Theorem 4.1 (Adeqacy). If {E (𝜀)} 𝑒 {𝜙} , then for all schedulers 𝜁 , Prexec𝜁 𝑒 [¬𝜙 ] ≤ 𝜀.

The theorem says that by proving a Hoare triple for the expression 𝑒 , assuming initial ownership

of E (𝜀) error credits, then for all schedulers 𝜁 , the probability of the program 𝑒 returning a value

not satisfying the proposition 𝜙 is smaller than or equal to 𝜀.

In addition, we have another safety theorem that provides an upper bound on the probability of

the expression getting stuck.

Theorem 4.2 (Safety). If {E (𝜀)} 𝑒 {True} , then for all schedulers 𝜁 with mass 1 and integers 𝑛,
the mass of pexec𝜁 ,𝑛 (Ξ, ( [𝑒], 𝜎)) is greater or equal to 1 − 𝜀.
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Intuitively, this theorem states that proving {E (𝜀)} 𝑒 {True} in Coneris implies that the probability

of 𝑒 getting stuck is at most 𝜀 for all schedulers4.

4.2 Rules of Coneris
Program-Logic Rules. Coneris satisfies all the usual structural and computational rules present

in Iris-based separation logics. For example, Coneris satisfies the bind rule (ht-bind), the frame

rule (ht-frame), and the usual computational rules of for interacting with the heap (e.g., ht-load).
ht-bind

{𝑃} 𝑒 {𝑣 .𝑄} ∀𝑣 . {𝑄} 𝐾 [𝑣] {𝑅}
{𝑃} 𝐾 [𝑒] {𝑅}

ht-frame

{𝑃} 𝑒 {𝑄}
{𝑃 ∗ 𝑅} 𝑒 {𝑄 ∗ 𝑅}

ht-load

{𝑙 ↦→ 𝑣} ! 𝑙 {𝑤.𝑤 = 𝑣 ∗ 𝑙 ↦→ 𝑣}
Invariants can be allocated by giving up ownership of the corresponding resources (ht-inv-

alloc). If we own an invariant, we can temporarily, for one atomic step, get access to its contents

(ht-inv-open). The later modality ⊲ is important for soundness but can otherwise be ignored [25].

ht-inv-alloc{
𝑃
𝜄 ∗ 𝑄

}
𝑒 {𝑅}E

{𝑃 ∗ 𝑄} 𝑒 {𝑅}E

ht-inv-open

𝑒 atomic {⊲ 𝐼 ∗ 𝑃} 𝑒 {⊲ 𝐼 ∗ 𝑄}E{
𝐼
𝜄 ∗ 𝑃

}
𝑒 {𝑄}E⊎{𝜄}

The Update Modality. The update modality |⇛E1 E2 is the primary primitive for manipulating

ghost resources and interacting with invariants in the Iris base logic. As we alluded to earlier in §2,

a key idea behind the HOCAP approach to modular specification is to use this modality as a way to

assert that a proposition could be proven by opening invariants.

The update modality |⇛E1 E2 is annotated with two sets of invariants. We write |⇛E when

E1 = E2 = E and |⇛ when E = ⊤, the set of all names. Intuitively, the assertion |⇛E1 E2 𝑃 denotes a

resource that, together with the resources from the invariants in E1, can be updated and split into

two disjoint pieces: one satisfying 𝑃 and one satisfying the invariants in E2. That is, we can use

the update modality to specify resource updates and invariant access (inv-open) as an assertion
in the logic rather than just as a primitive rule of the program logic. The update modality can be

eliminated (ht-fupd-elim) at any suitable time during program verification.

inv-open

𝑃
𝜄

⊲ 𝑃 ∗ |⇛E1 E2 (⊲ 𝑃 ∗ 𝑄)
|⇛E1⊎{𝜄} E2⊎{𝜄} 𝑃

ht-fupd-elim

𝑒 atomic {𝑃 ∗ 𝑄} 𝑒
{
|⇛E2 E1𝑅

}
E2{(

|⇛E1 E2 𝑃
)
∗ 𝑄

}
𝑒 {𝑅}E1

A key idea behind the approach we apply in §5 is to parameterize program specifications by a

proposition of the shape 𝑃 ∗ |⇛E1 E2𝑄 , a so-called view shift, that is eliminated at the linearization

point of the module operation. By providing a view shift as an argument, the client can specify how

they wish for their logical state (their “view”) to evolve when the operation physically takes place.

Presampling Tapes. Reminiscent of how prophecy variables [1, 2, 26] allow us to talk about

the future, presampling tapes give us the means to talk about the outcome of sampling statement

in the future. Presampling tapes were introduced in Clutch [20] to address an alignment issue in

refinement proofs, but as we later see in §5 they also play a crucial role in modularizing (unary)

proofs about concurrent probabilistic programs through probabilistic view shifts.

Intuitively, presampling tapes allow us in the logic to presample the outcome of future sampling

statements. Formally, they appear both operationally and in the logic. In the programming language,

presampling tapes appear as two new ghost code constructs, tape 𝑒 and rand 𝑒1 𝑒2, that are used to

allocate a new presampling tape and sample from a tape, respectively.

4
The condition that 𝜁 must have mass 1 (for all scheduler states) rules out the pathological situation where a configuration

is “stuck” because 𝜁 has probability less than 1 to pick any thread to step next. The assumption is only used in Theorem 4.2.
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𝑣 ∈Val ::= . . . | 𝜅 ∈ Label
𝑒 ∈ Expr ::= . . . | tape 𝑒 | rand 𝑒1 𝑒2

𝜎 ∈ State ≜ (Loc fin−⇀Val) × (Label fin−⇀ Tape)
𝑡 ∈ Tape ≜ {(𝑁, ®𝑛) | 𝑁 ∈ N ∧ ®𝑛 ∈ N∗≤𝑁 }

In the operational semantics, allocation of a fresh presampling tape (4) via tape𝑁 determin-

istically associates a fresh label 𝜅 to the empty tape 𝜖 . A labelled rand𝜅 𝑁 with an empty tape

samples uniformly (5), i.e., it behaves like an unlabelled rand𝑁 . If, on the other hand, the tape 𝜅 is

non-empty, rand𝑁 𝜅 deterministically pops the first value 𝑛 from the tape (6). Note that no step in

the operational semantics writes contents to a presampling tape. In fact, tapes and label annotations

do not in any way alter the behavior of the program and can be entirely erased [20]. However, as

we later see, the probabilistic update modality allows us to reason as if a presampling step could

asynchronously pre-populate a tape with a random sample at any point in time.

step(tape𝑁, 𝜎) = ret(𝜅, 𝜎 [𝜅 := (𝑁, 𝜖)], []) (where 𝜅 is fresh w.r.t. 𝜎) (4)

step(rand𝜅 𝑁, 𝜎) = 𝜆 (𝑛, 𝜎, []) . 1

𝑁+1 if 𝜎 [𝜅] = (𝑁, 𝜖) ∧ 𝑛 ∈ {0, . . . , 𝑁 } and 0 otherwise (5)

step(rand𝜅 𝑁, 𝜎 [𝜅 := 𝑛 · ®𝑛]) = ret(𝑛, 𝜎 [𝜅 := ®𝑛], []) (6)

Now, the logical assertion 𝜅 ↩→ (𝑁, ®𝑛) denotes ownership of the presampling tape 𝜅 with bound

𝑁 and contents ®𝑛, analogously to how the points-to connective for the heap denotes ownership of a

location and its contents. The two rules ht-alloc-tape and ht-rand-tape reflects the operational

behavior of equations (4) and (6) in the logic.

ht-alloc-tape

{True} tape 𝑁 {𝜅. 𝜅 ↩→ (𝑁, 𝜖)}

ht-rand-tape

{𝜅 ↩→ (𝑁,𝑛 · ®𝑛)} rand𝜅 𝑁 {𝑥 . 𝑥 = 𝑛 ∗ 𝜅 ↩→ (𝑁, ®𝑛)}

Probabilistic Update Modality. Previous work [3, 20, 21] introduce presampling tapes for

different purposes but, common for all instantiations, presampling is only supported as a rule in

the program logic. Similar to how ht-inv-open only allows us to reason about invariants using

the program logic, presampling is only supported as a primitive program-logic rule. This is not
sufficient for the modular specifications we set out to prove. Intuitively, we need a way to specify

updates to presampling tapes as an assertion, just like the update modality enables us to specify

invariant access and resource updates as an assertion.

To this end, we introduce the probabilistic update modality |⇝⇝E1 E2 𝑃 . This modality satisfies all

the same rules as the update modality: e.g., it can be used to open invariants (hence the invariant

masks E1 and E2) and update resources, it is monadic (pupd-ret and pupd-bind), can be derived

from the update modality (pupd-fupd), and it can be eliminated (ht-pupd-elim).

pupd-ret

𝑃

|⇝⇝E 𝑃

pupd-bind

|⇝⇝E1 E2 𝑃 𝑃 ∗ |⇝⇝E2 E3𝑄

|⇝⇝E1 E3𝑄

pupd-fupd

|⇛E1 E2 𝑃

|⇝⇝E1 E2 𝑃

ht-pupd-elim

{𝑃 ∗ 𝑄} 𝑒 {𝑅}E{
( |⇝⇝E 𝑃) ∗ 𝑄

}
𝑒 {𝑅}E

pupd-presample-exp

E𝔘𝑁 [F ] ≤ 𝜀 E (𝜀) 𝜅 ↩→ (𝑁, ®𝑛)
|⇝⇝E (∃𝑛. 𝜅 ↩→ (𝑁, ®𝑛 · 𝑛) ∗ E (F (𝑛)) ∗ 𝑛 ∈ {0..𝑁 })

pupd-err

|⇝⇝E (∃𝜀. 0 < 𝜀 ∗ E (𝜀))

The key novelty of the probabilistic modality is its ability to populate presampling tapes as

shown in pupd-presample-exp. The rule says that if we own a presample tape we can populate the

tape with a freshly sampled value 𝑛. Similar to ht-rand-exp, it allows re-distributing error credits

along different branches of the randomized outcome, as long as the expected value of the error

credit does not increase. We showcase the probabilistic update modality on an example in §5.4.
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As a somewhat orthogonal property, the probabilistic update modality also internalizes the

notion of continuity of probabilities within the logic. Specifically, it permits synthesizing some

arbitrarily small error credit out of thin air as seen in pupd-err. This principle enables induction by
error amplification [3] as we showcase in §5.4.

5 Modular Specifications of Concurrent Randomized Modules
In this section, we first provide an overview of how HOCAP-style specifications capture logically

atomicity of concurrent data structures. Next, we explain how we extend the approach to capture

randomized logical atomicity and present a modular specification for the randomized counter

module. We also describe how the specification is strong enough to verify clients that use the

randomized counter module concurrently. Subsequently, we present three different implementations

of the concurrent randomized counter module and discuss how to show that they satisfy the

specification. Later in §6 we discuss how we verify a series of larger case studies.

5.1 Modular Specifications of Concurrent Randomized Modules: Overview
Before considering the randomized setting, we showcase our specification style on a non-randomized

example: a concurrent counter module with functions for creating a counter, (deterministically)

incrementing by one, and reading.

As alluded to in §4.2, the high level idea is to parameterize specifications by a view shift that

captures how the logical state of the counter evolves at the linearization point. Our specification of

the non-randomized counter module is shown in Figure 3.

{True} createCntr () {𝑐. ∃𝜄. counter 𝜄 𝑐 ∗ cfrag 1 0}
∀E, 𝜄, 𝑐,𝑄.

{
counter 𝜄 𝑐 ∗ (∀𝑧. cauth 𝑧 ∗ |⇛E cauth (𝑧 + 1) ∗ 𝑄 𝑧)

}
incrCntr 𝑐 {𝑧.𝑄 𝑧}E⊎{𝜄}

∀E, 𝜄, 𝑐,𝑄.
{
counter 𝜄 𝑐 ∗ (∀𝑧. cauth 𝑧 ∗ |⇛E cauth 𝑧 ∗ 𝑄 𝑧)

}
readCntr 𝑐 {𝑧.𝑄 𝑧}E⊎{𝜄}

Fig. 3. Specification for a (non-randomized) concurrent counter module.

When creating a counter, one obtains ownership of two resources: counter 𝜄 𝑐 and cfrag 1 0. The

counter 𝜄 𝑐 resource captures that 𝑐 is a counter with an associated invariant name 𝜄. Intuitively,

this invariant contains the internal state of the counter but the details are unknown to clients. The

predicate is persistent, i.e., counter 𝜄 𝑐 ⊣⊢ counter 𝜄 𝑐 ∗ counter 𝜄 𝑐 and can hence be freely shared.

The predicates cauth and cfrag provide authoritative and fragmental views of the counter. In-
tuitively, cauth provides the counter module’s view of the counter and cfrag denotes the client’s

view. A fragmental view cfrag 𝑞 𝑛 denotes a 𝑞-fractional view that the counter is at least the
value 𝑛. The cfrag 𝑞 𝑛 resource can be split and combined, i.e., cfrag (𝑞1 + 𝑞2) (𝑛1 + 𝑛2) ⊣⊢
cfrag (𝑞1, 𝑛1) ∗ cfrag(𝑞2, 𝑛2) and thus shared. The fragmental view is guaranteed to be consis-

tent with the authoritative view, i.e., cauth 𝑛 ∗ cfrag 𝑞 𝑚 ⊢𝑚 ≤ 𝑛 and cauth 𝑛 ∗ cfrag 1𝑚 ⊢𝑚 = 𝑛,

and updated accordingly, i.e., cauth 𝑛 ∗ cfrag 𝑞 𝑚 ⊢ |⇛E cauth (𝑛 + 𝑝) ∗ cfrag 𝑞 (𝑚 + 𝑝).
The specification for the increment and read functions are parameterized by a view shift that gives

(temporary) access to the module’s view. This is one of the key ideas of HOCAP-style specifications.

From the client’s perspective, the view shift is a proof obligation. For the increment function,

proving this view shift requires having ownership of a fragmental view (to update the resources),

but the fragmental view can be provided by opening an invariant using the update modality. The

client-chosen predicate 𝑄 lets the client derive information as part of the view shift. For example,

they can pick 𝑄 𝑧 ≜ cfrag 𝑞 (𝑛 + 1) ∧ 𝑧 = (𝑛 + 1).
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Probabilistic Concurrent modules with Error Redistribution. Now, consider the random-

ized concurrent counter module from §2 where the increment function increments the counter by a

value chosen uniformly at random from 0 to 3. For the client to be able to redistribute error credits

as part of the random sampling, we parameterize the specification of the increment function by

another view shift as shown in Figure 4.

∀E, 𝜄, 𝑐,𝑄.

{
counter 𝜄 𝑐 ∗ |⇛E ∅

(
∃𝜀, F . E (𝜀) ∗ (E𝔘3

[F ] ≤ 𝜀) ∗ ∀𝑥 ∈ {0..3}. E (F (𝑥)) ∗(
|⇛∅ E (∀𝑧. cauth 𝑧 ∗ |⇛E cauth (𝑧 + 𝑥) ∗ 𝑄 𝜀 F 𝑥 𝑧)

) )}
incrCntr 𝑐

{𝑧. ∃𝜀, F , 𝑥 . 𝑄 𝜀 F 𝑥 𝑧}E⊎{𝜄}
Fig. 4. Specification of incrCntr for a concurrent randomized counter module.

Notice that in the precondition the client now has to prove a view shift which is split into two

parts. We begin by looking at the second part (the line at the bottom). This is analogous to the

deterministic case, except that the abstract state cauth 𝑧 gets incremented by some uniformly

sampled 𝑥 ∈ {0..3}. This operation is randomized, so we also let the client update their error credits

along this distribution, which is the first part of the view shift. After opening all invariants in E,
the client chooses some 𝜀 and an error distribution function F , gives up E (𝜀), gets back E (F (𝑥)),
re-establishes all invariants in E, and goes on to prove the second part. Notice that the specification

allows the client to retrieve error credits from an invariant. Intuitively, these two parts of the view

shift capture two separately logically atomic actions of the increment operation. The first being

the random operation where we re-distribute errors, and the second being the actual increment,

where we increase the counter by the sampled value. If all these preconditions are satisfied, then at

the end of incrCntr , we return some value 𝑧 which satisfies 𝑄 𝜀 F 𝑥 𝑧 for some 𝜀, F , and 𝑥 . The
specification for creating and reading the counter are unchanged as no randomization is involved.

Probabilistic Concurrent Modules with Error Redistribution and Presampling. One
limitation of the previous specification is that the sampling operation is fixed to take place within

the function call incrCntr . As a result, the only point at which randomness can be generated for the

module, and errors can be distributed, is at the invocation of the increment operation. However, it

is sometimes useful to reason about the probabilistic part of the operation asynchronously.

In Clutch [20] presampling tapes are used to generate randomness asynchronously and facilitate

refinement proofs. In a concurrent setting, there is also an asynchronous component arising from

the order in which randomized operations are physically resolved, and we propose the use of

presampling and tapes to resolve them in advance and independently from this order.

In the previous specification, the view shift consisted of a probabilistic part (i.e., spending and
distribution of error credits) and a deterministic part (updating the abstract state). Presampling

allows us to decouple these two parts and reason about them separately, resulting in a more

expressive HOCAP-style specification. We demonstrate that by exposing tapes and presampling

operations in the module specifications, clients can perform presampling for an abstract randomized

operation. This is an indispensable technique for verifying certain concurrent modules, and we

show an example in §5.2.

The new and final specification of the probabilistic counter module, which includes not only

error redistribution, but also a (ghost) method for creating an abstract presampling tape and a

(ghost) operation for sampling on a tape, see Figure 5. This specification has a new predicate ctape
that stores the presampled randomness for the random counter. Note that ctape is an abstract

predicate which might be realized in multiple ways besides using primitive tape predicates, which
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∀E, 𝜀, F , ®𝑛, 𝜅. (E (𝜀) ∗ (E𝔘3
[F ] ≤ 𝜀) ∗ ctape 𝜅 ®𝑛 ∗ |⇝⇝E ∃𝑛 ∈ {0..3}. E (F (𝑛)) ∗ ctape 𝜅 (®𝑛 · [𝑛]))

∀𝜄, 𝑐 . {counter 𝜄 𝑐} createCtape() {𝜅. ctape 𝜅 𝜖}

∀E, 𝜄, 𝑐, 𝑛, ®𝑛,𝑄.
{

counter 𝜄 𝑐 ∗ ctape 𝜅 (𝑛 · ®𝑛) ∗
(∀𝑧. cauth 𝑧 ∗ |⇛E cauth (𝑧 + 𝑛) ∗ 𝑄 𝑧)

}
incrCntr 𝑐 𝜅

{
𝑧.ctape 𝜅 ®𝑛 ∗ 𝑄 𝑧

}
E⊎{𝜄}

Fig. 5. Specification for a randomized counter module with presampling tapes.

allows us to hide the details of how different implementations of the counter module physically

generate randomness. By exposing the abstract presampling tape explicitly, we aim to capture

more of the proof principles for a concrete randomized operation. (In §5.2, we demonstrate that

this specification which exposes abstract tapes is in fact more general than the previous one)

Compared to the previous randomized specification, reasoning about randomness of the incre-

ment operation is now extracted into a separate condition that utilizes the probabilistic update

modality (|⇝⇝ 𝑃 ), which says that we can presample onto the ctape and distribute errors in a

expectation-preserving manner. With this change, clients can allocate their own local tapes via

createCtape and reason about randomness locally. The incrCntr function takes a non-empty ctape
predicate as argument, and acts in a (logically) deterministic manner, by reading and consuming

the first element 𝑛 of the tape, and incrementing the abstract state of the counter by 𝑛.

Now that we have shown an expressive specification (Figure 5), in the following sections, we show

how this specification suffices to verify clients. We also show that three different implementations

of the probabilistic random counter module all meet this specification. These three implementations

exhibit different numbers of sampling operations, but yet they all meet the same abstract module

specification. In other words, the randomization of the increment operation acts “logically atomic”

as expressed by a single probabilistic update, even if in reality, it is not. From the perspective of

a client, random sampling within the increment operation appears to behave as if it is simply a

single rand 3. We refer to this as randomized logical atomicity.

5.2 Verifying Clients of Randomized Counter Module
We now describe how the specification with error re-distribution and presampling tapes shown in

Figure 5 can be used to verify concurrent clients. We also show how the HOCAP-style specification

that exposes abstract tapes is more general than the one that does not.

Revisiting conTwoAdd. We begin with the conTwoAdd client example introduced in §2. Since the

new specification of the randomized concurrent counter utilizes tapes, we annotate the conTwoAdd
client to use the abstract tapes exposed in the specification:

conTwoAdd ≜ let 𝑐 = createCntr () in(
let 𝜅 = createCtape() in
incrCntr 𝑐 𝜅

������������ let 𝜅 = createCtape() in
incrCntr 𝑐 𝜅

)
;

readCntr 𝑐

Recall that we expect the return value to be 0 with a probability 1/16. We state this through the

following Coneris Hoare triple: {E (1/16)} conTwoAdd {𝑣 .𝑣 > 0} .
We present here a high level intuition for the proof and defer the details to Appendix A. Most

of this proof is similar to the one sketched in §2 where we allocate an invariant that encodes a

protocol that tracks both the available amount of error credits and the ghost state of both threads

and describes how they can evolve. In the case where both threads sampled 0, we are able to obtain

E (1) from the invariant at the end and derive a contradiction with err-1.
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The difference between this proof and that from §2 is twofold. Firstly, the randomness is generated

asynchronously using the presampling rule and the abstract tapes. The probabilistic update modality

allows us to open the invariant, obtain error credits from it, presample onto our abstract tapes,

redistribute the error credits, and close the invariant again, all in an atomic manner. Secondly,

to apply incrCntr and readCntr , we need to prove the view shifts in the precondition of their

corresponding Hoare triple specifications.

An important detail of this proof is that we do not need to place any ctape predicate in the

invariant. Each thread uses a separate and local tape which does not need to be shared. This kind

of “local tape” principle lets each thread “own” its own randomness and this simplifies the proof

since we need not worry how the state of ctape is changed by other external concurrent threads.

Advantage of Exposing Abstract Tapes. Recall that in §5.1, we presented a simpler specifi-

cation of the randomized counter module (Figure 4) that does not expose presampling tapes as

abstract predicates. To see why that specification is not as general as that in Figure 5 and that it is

useful to expose the presampling tapes in the specification, consider the following twoIncr program
and its specification in Figure 6.

twoIncr _ ≜ let 𝑐 = createCntr () in
let 𝜅 = createCtape () in
incrCntr 𝑐 𝜅;

let 𝑣1 = readCntr 𝑐 in
incrCntr 𝑐 𝜅;

let 𝑣2 = readCntr 𝑐 − 𝑣1 in
4 · 𝑣1 + 𝑣2

{
|⇛E ∅∃𝜀, F . E (𝜀) ∗ (E𝔘15

[F ] ≤ 𝜀) ∗
(∀𝑥 . E (F (𝑥)) ∗ |⇛∅ E𝑄 𝜀 F 𝑥)

}
twoIncr ()
{𝑧. ∃𝜀, F . 𝑄 𝜀 F 𝑧}E⊎{𝜄}

Fig. 6. Implementation and specification of twoIncr .

The sequential program twoIncr first creates a new randomized counter and allocates a tape for

the counter. It then performs two incrCntr and readCntr pair operations successively, to read the

exact values 𝑣1 and 𝑣2 added to the counter. At the end it returns 4 · 𝑣1 + 𝑣2. As both 𝑣1 and 𝑣2 are
sampled uniformly from {0, . . . , 3}, the return value is uniformly distributed between {0, . . . , 15}.
This is captured by the Hoare triple in Figure 6 where error credits can be re-distributed across

the 16 possibilities in an expectation-preserving way. Note that the view shift of the Hoare triple

captures the fact that the re-distribution happens in a logically-atomic manner.

Proving the specification of twoIncr with the more general specification (Figure 5) is relatively

straightforward. After applying the specification for creating the counter and the tape, we perform

two consecutive presamples onto ctape with the presampling specification of the counter module.

These two presampling operations are combined into one atomic operation with the pupd-bind

rule, allowing us to use the view shift provided in the precondition to split the error credits for the

16 possibilities. The rest of the proof follows directly by applying the specification for incrementing

the counter with the tape and reading from it twice.

However, the specification without the presampling tapes exposed (Figure 4) is not strong enough

to prove this Hoare triple. The specification restricts the error redistribution to only occur within

the incrCntr call, and we are unable to combine the two separate error redistribution operations

in each incrCntr call into one atomic action. On the other hand, the more general specification

allows us to “pull” the randomized operation out of the incrCntr call and perform the randomized

operation in advance using the presampling operation of the abstract tapes.
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5.3 Three Implementations of the Randomized Counter Module
Recall from §5.1 that the specification of the randomized counter module from Figure 5 provides

four methods: createCntr for creating the counter, createCtape for creating a tape, incrCntr for
incrementing the counter with a random value chosen uniformly from the set {0, . . . , 3} (sampled

from the tape), and readCntr for reading the value of the counter.
To illustrate the expressiveness of our modular specification, we consider three implementations

that we show meet the same specification, which we refer to as 𝐼1, 𝐼2, and 𝐼3, respectively. They

only differ in the way they implement the createCtape and incrCntr method–the implementations

of createCntr and readCntr are the same in all three implementations:

createCntr ≜ 𝜆 _. ref 0 readCntr ≜ 𝜆 𝑙 . ! 𝑙

Internally, the counter is represented by a pointer to a number and the read method simply

dereferences the pointer. The three implementations of the create tape and increment methods are

shown in Figure 7. In 𝐼1, the increment method simply increments the counter value stored at the

createCtape
1
≜ 𝜆 (). tape 3

createCtape
2
≜ 𝜆 (). tape 1

createCtape
3
≜ 𝜆 (). tape 4

incrCntr1 ≜ 𝜆 𝑙, 𝜅. faa 𝑙 (rand𝜅 3)
incrCntr2 ≜ 𝜆 𝑙, 𝜅. let 𝜅 = tape 1 in

faa 𝑙 (rand𝜅 1 · 2 + rand𝜅 1)
incrCntr3 ≜ rec 𝑓 𝑙 𝜅 = let 𝑥 = rand𝜅 4 in

if 𝑥 < 4 then faa 𝑙 𝑥 else 𝑓 𝑙 𝜅

Fig. 7. Implementation of the counter module.

location by a rand 3 chosen value between 0 and 3 using a fetch-and-add instruction. The function

hence creates a tape with bound 3. In 𝐼2, the increment method is implemented using two coin flips

(i.e., calls to rand 1), and in 𝐼3, we use a recursive rejection sampler that, in order to simulate rand 3,
repeatedly samples from rand 4 until it gets a value within {0, . . . 3}. The createCtape function for

both implementations creates a tape with bound 1 and 4, respectively.

For 𝐼2 and 𝐼3 in particular, it is interesting that even though the implementations do not sample

randomness atomically (e.g., 𝐼3 can possibly execute any number of rand 4 operations), they still

meet the specification where the presampling of a single value onto the abstract tape is described

by a single probabilistic update modality as we show in the next section. In other words, we capture

randomized logically atomicity of the module in the sense that externally, there appears to be a

single randomized transition within the incrCntr function.

5.4 Verifying 𝐼1, 𝐼2, and 𝐼3
We now show how the three randomized counter implementations meet the specification with error

redistribution and presampling tapes. We start by giving concrete definitions for the three abstract

predicates. For the three implementations, it turns out that the counter predicate counter , and the

cauth and cfrag predicates are defined identically; the persistent counter predicate counter 𝜄 𝑐 is
defined as ∃𝑙, 𝑛. 𝑐 = 𝑙 ∗ 𝑙 ↦→ 𝑛 ∗ cauth 𝑛 𝜄

and the cauth and cfrag predicates are defined with a

standard authoritative-fractional resource algebra [25]. We show the exact definition of ctape for
each of the three implementations below.

ctape
1
𝜅 ®𝑛 ≜ 𝜅 ↩→ (3, ®𝑛)

ctape
2
𝜅 ®𝑛 ≜ 𝜅 ↩→ (1, expand ®𝑛) ∗ (∀𝑥 ∈ ®𝑛. 𝑥 < 4)

ctape
3
𝜅 ®𝑛 ≜ ∃ ®𝑚. filter (𝜆 𝑥 . 𝑥 < 4) ®𝑚 = ®𝑛 ∗ 𝜅 ↩→ (4, ®𝑚)
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For ctape
1
, since the first implementation uses a rand 3 to sample from 0 to 3 directly, we define

ctape
1
with the presampling tape 𝜅 ↩→ (3, ®𝑛). For ctape

2
, since we are sampling from 0 to 3 via

two rand 1s, the predicate is defined by expanding the tape elements into its binary representation.

The function expand takes in a list of numbers and rewrites them into binary representation while

keeping the list “flattened”. For example expand( [2; 3; 1; 0]) returns [1; 0; 1; 1; 0; 1; 0; 0]. Finally, for
the third implementation, if we are logically storing ®𝑛 with our ctape predicate, the concrete tape
stores some list ®𝑚 such that ®𝑛 is equal to ®𝑚 with all 4s removed from it.

It suffices to show that the functions createCntr , createCtape, incrCntr , and readCntr satisfy the

specification and that ctape satisfies the presampling probabilistic update specification, i.e., we can
logically append a new element into the ctape while redistributing errors. The specification of the

functions are not too complicated. As an example, consider the incrCntr specification for 𝐼3.{
counter 𝜄 𝑐 ∗ ctape 𝜅 (𝑛 · ®𝑛) ∗ (∀𝑧. cauth 𝑧 ∗ |⇛E cauth (𝑧 + 𝑛) ∗ 𝑄 𝑧)

}
incrCntr3 𝑐 𝜅

{𝑧. ctape 𝜅 ®𝑛 ∗ 𝑄 𝑧}E⊎{𝜄}

After unfolding the definition of the abstract predicates for 𝐼3, we repeatedly loop through the

recursive function until we reach a value 𝑛 in the tape that is smaller than 4 by structural induction

on the tape or Löb induction. During the atomic faa operation, we open the invariant with ht-inv-

open and eliminate the view shift in the precondition. The specification of the other functions can

be proven similarly.

We now focus on showing that for each of the ctape definitions, they satisfy the presampling

specification. For ctape
1
, we see after unfolding its definition, the statement of the presampling

specification is the same as that of pupd-presample-exp and hence holds directly. For ctape
2
, it

suffices to prove the following probabilistic update:

(E𝔘3
[F ] ≤ 𝜀) ∗ 𝜅 ↩→ (1, ®𝑛) ∗ E (𝜀) ∗

|⇝⇝E ∃𝑣1, 𝑣2 . E (F (𝑣1 · 2 + 𝑣2)) ∗ 𝜅 ↩→ (1, ®𝑛 · [𝑣1, 𝑣2])
(7)

This probabilistic update is valid because we can do two presamples consecutively via pupd-

bind. We first apply pupd-presample-exp to presample the first bit, choosing the first error

splitting function F𝑎 ≜ 𝜆 𝑏. if 𝑏 = 1 then F (2) + F (3) else F (0) + F (1). We then do a case

distinction on the bit that was sampled. If it is 0, we apply pupd-presample-exp again, choosing

the error splitting function to be F𝑏 ≜ 𝜆 𝑏. if 𝑏 = 1 then F (1) else F (0). Otherwise, we choose
F𝑏 ≜ 𝜆 𝑏. if 𝑏 = 1 then F (3) else F (2).
For ctape

3
we want to show that we can repeatedly presample enough values onto the tape such

that the last element is smaller than 4 and all values beforehand are 4, while distributing the error

credit according to the final value. This can be shown by the following lemma:

(E𝔘3
[F ] ≤ 𝜀) ∗ (∃ ®𝑚. filter (𝜆 𝑥 . 𝑥 < 4) ®𝑚 = ®𝑛 ∗ 𝜅 ↩→ (4, ®𝑚)) ∗ E (𝜀) ∗

|⇝⇝E ∃𝑛. 0 ≤ 𝑛 < 4 ∗ E (F (𝑛)) ∗ ∃ ®𝑚. filter (𝜆 𝑥 . 𝑥 < 4) ®𝑚 = (®𝑛 · [𝑛]) ∗ 𝜅 ↩→ (4, ®𝑚) (8)

We prove this probabilistic update through induction by error amplification. We first apply pupd-bind

and pupd-err to obtain some positive error credit E (𝜀′) to get the following:

(E𝔘3
[F ] ≤ 𝜀) ∗ 𝜀′ > 0 ∗ E (𝜀′) ∗ (∃ ®𝑚. filter (𝜆 𝑥 . 𝑥 < 4) ®𝑚 = ®𝑛 ∗ 𝜅 ↩→ (4, ®𝑚)) ∗ E (𝜀) ∗

|⇝⇝E ∃𝑛. 0 ≤ 𝑛 < 4 ∗ E (F (𝑛)) ∗ (∃ ®𝑚. filter (𝜆 𝑥. 𝑥 < 4) ®𝑚 = (®𝑛 · [𝑛]) ∗ 𝜅 ↩→ (4, ®𝑚))
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Now we apply the induction by error amplification rule below (see Eris [3] for more details):

ind-err-amp

𝜀1 > 0 𝑘 > 1 E (𝜀1) ∀𝜀2 . (E (𝑘 · 𝜀2) ∗ 𝑃) ∗ E (𝜀2) ∗ 𝑃
𝑃

Morally this states that in order to prove 𝑃 we can assume it holds guarded by an amount of credits

amplified by a factor 𝑘 strictly greater than 1. We choose the amplification factor 𝑘 ≜ 5. It suffices

to show (with the induction hypothesis highlighted):

(E𝔘3
[F ] ≤ 𝜀) ∗ 𝜀′ > 0 ∗

(
E (5 · 𝜀′) ∗ (∃ ®𝑚. filter (𝜆 𝑥. 𝑥 < 4) ®𝑚 = ®𝑛 ∗ 𝜅 ↩→ (4, ®𝑚)) ∗ . . .

)
∗

E (𝜀′) ∗ (∃ ®𝑚. filter (𝜆 𝑥. 𝑥 < 4) ®𝑚 = ®𝑛 ∗ 𝜅 ↩→ (4, ®𝑚)) ∗ E (𝜀) ∗ . . .

We can now combine E (𝜀) ∗ E (𝜀′) with err-split and apply pupd-presample-exp with E (𝜀 + 𝜀′) as
the initial error budget.We choose the distribution function to be 𝜆 𝑥 . if 𝑥 < 4 then F (𝑥) else 𝜀+5·𝜀′.
After a single presampling step, we do a case distinction on whether the presampled value is 4 or

not. If it is, then we establish the conclusion with the induction hypothesis since we successfully

amplified the error credit E (𝜀′) by a factor of 5. Otherwise, we presampled an “accepted” value,

and we can directly establish the goal via pupd-ret.

6 Case Studies
In this section, we present several other case studies that we have verified using Coneris.

6.1 Thread-Safe Hash Functions
Hash functions are often assumed to behave uniformly [11]. That is, a hash function ℎ from a set of

keys 𝐾 to a set of values 𝑉 behaves as if, for each key 𝑘 , the hash ℎ(𝑘) is randomly sampled from a

uniform distribution over𝑉 independently of all other keys. This assumption can be modeled using

an idealized hash function that uses a mutable map, which serves as a cache of hashes computed

so far [30]. If the key has already been hashed, we return the value stored in the map, otherwise

we sample a fresh value uniformly, store it in the cache, and return it. In the concurrent setting,

however, this does not suffice: if two threads concurrently attempt to hash the same key 𝑘 , they

may end up with different hash values. If one thread gets preempted by the scheduler right after

sampling, a second thread could overtake and sample a different value before the first thread stores

its value to the cache.

We implement a thread-safe idealized hash function using a lock. To hash a value, one first

acquires the lock, then samples the key and stores it to the cache, before releasing the lock again.

While the implementation is uninteresting, its specification is not. In particular, we give a specifica-

tion that offers exclusive ownership of each key 𝑘 and the ability to presample the hash ℎ(𝑘). As
we later see in §6.2, this ability can greatly simplify the probabilistic analysis of concurrent data

structures that use hashing.

The hashInit function initializes a new hash function and satisfies the specification below.

{True} hashInit () {ℎ. ∃𝛾 . hashFun 𝛾 ℎ ∗ ∗𝑘∈𝐾 hashKey 𝛾 𝑘 −}

Here, 𝛾 is a ghost name logically identifying the hash function. The abstract predicate hashFun 𝛾 ℎ
is duplicable, i.e., hashFun 𝛾 ℎ ⊣⊢ hashFun 𝛾 ℎ ∗ hashFun 𝛾 ℎ, while hashKey 𝛾 𝑘 − represents

that key 𝑘 has not yet been hashed, and is exclusive, i.e., hashKey 𝛾 𝑘 − ∗ hashKey 𝛾 𝑘 − ⊢ False.
When invoking a hash function on a key with an undecided value, a fresh value 𝑣 ∈ 𝑉 is sampled

and hashKey 𝛾 𝑘 𝑣 is returned. The predicate hashKey 𝛾 𝑘 𝑣 is duplicable and each subsequent
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bfInit () ≜
let hfs = List.init 𝑘 (λ _. hash_init ()) in
let arr = Array.init 𝑆 false in

(hfs, arr)

bfAdd bfl 𝑥 ≜

let (hfs, arr) = bfl in

List.Iter(λℎ. let 𝑖 = ℎ 𝑥 in
arr[𝑖] ← true) hfs

bfLookup bfl 𝑦 ≜

let (hfs, arr) = bfl in

let res = ref true in

List.Iter(λℎ. let 𝑖 = ℎ 𝑦 in
res← ! res&& arr[𝑖]) hfs;

! res

bfMain xs y ≜

let bfl = bfInit () in
(rec 𝑓 zs =

match zs with

| [ ] ⇒ ()
| z :: zs′ ⇒ (bfAdd bfl z) | | | (f zs′)
end) ks;

bfLookup bfl k

Fig. 8. Implementation of a concurrent Bloom filter.

invocation is guaranteed to return 𝑣 .

{hashFun 𝛾 ℎ ∗ hashKey 𝛾 𝑘 −} ℎ 𝑘 {𝑣 . ∃𝑣 ∈ 𝑉 . hashKey 𝛾 𝑘 𝑣}
{hashFun 𝛾 ℎ ∗ hashKey 𝛾 𝑘 𝑣} ℎ 𝑘 {𝑤.𝑤 = 𝑣}

However, hash values can also be presampled and error credits redistributed across the possible

outcomes of the presampling using the probabilistic update below.

hashFun 𝛾 𝑓 ∗ hashKey 𝛾 𝑘 − ∗ E (𝜀) ∗
|⇝⇝⊤ ∃𝑣 ∈ 𝑉 . hashKey 𝛾 𝑘 𝑣 ∗ (𝑣 ∈ 𝑋 ∗ E (𝜀1)) ∨ (𝑣 ∉ 𝑋 ∗ E (𝜀0))

Here 𝑋 ⊆ 𝑉 is some set of hash values and 𝜀1, 𝜀0 ∈ [0, 1] such that 𝜀1 · |𝑋 | + 𝜀0 · ( |𝑉 | − |𝑋 |) ≤ 𝜀 · |𝑉 |.
For example, by picking 𝜀1 ≜ 1, 𝜀0 ≜ 0, and 𝜀 ≜ |𝑋 |/|𝑉 | one can spend 𝜀 error credits to avoid the

outcomes in 𝑋 when determining the hash ℎ(𝑘).
We show the specification by allocating a fresh presampling tape for each key in K. A similar

idea is used in previous work [20] to show refinement of lazy and eager hash functions. In our

specification, intuitively, hashKey 𝛾 𝑘 − denotes exclusive ownership of 𝑘’s presampling tape which

is transferred to an invariant after presampling. This invariant captures that, for all keys 𝑘 , either 𝑛
has been presampled onto 𝑘’s tape or 𝑛 has been stored at entry 𝑘 in the hash function’s cache.

6.2 Bloom Filter
Bloom filters are approximate data structures to represent sets, with operations for inserting

elements and querying for membership. In their most basic, sequential presentation, a Bloom filter

consists of an array of bits of a fixed size 𝑆 , initially set to 0, and a list of hash functions (ℎ1, . . . , ℎ𝑘 )
of some fixed length 𝑘 . When inserting an element 𝑥 , we compute (ℎ1 (𝑥) mod 𝑆, . . . , ℎ𝑘 (𝑥) mod 𝑆)
and set those indices to 1. When checking if an element 𝑦 is in the set, we also compute (ℎ1 (𝑦)
mod 𝑆, . . . , ℎ𝑘 (𝑦) mod 𝑆), and look up those indices in the array. If they are all set to 1, we answer

positively, otherwise we answer negatively. Thus, when checking the membership of an element

that is not in the set there exists a small probability of observing a false positive if there are hash

collisions with previously inserted elements. Computing this probability is challenging and requires

involved combinatorial reasoning, in fact Bloom’s original analysis [12] gave the wrong bound.
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An efficient concurrent implementation of a Bloom filter allows parallel insertions, since con-

current writes to the same entry in the array would both set the entry to 1. In this case study, we

implement a concurrent Bloom filter and prove a bound on the probability of observing a false

positive result on a membership query. We use the concurrent hash module presented in §6.1 to

implement this concurrent Bloom filter example (see Figure 8).

First consider 𝑁 sequential insertions 𝑥1, . . . , 𝑥𝑁 followed by checking membership for some

𝑦 ∉ {𝑥1, . . . , 𝑥𝑁 }. From a mathematical perspective, the probability of false positive corresponds to

the following experiment: first sample a batch of 𝑘 ·𝑁 integers uniformly at random in {0, . . . , 𝑆−1}.
Now sample a second batch of 𝑁 integers in the same manner. What is the probability that they

are all in the first batch? The exact bound was first calculated by Bose et al. [14], and in later work,

Gopinathan and Sergey [19] mechanized the proof.

Now suppose that the insertions 𝑥1, . . . , 𝑥𝑁 happen in 𝑁 parallel threads. Intuitively, concurrent

implementations of Bloom filters should have the same probability of false positive, since parallel

queries to hash functions are independent. Using our logic, we can make this intuition concrete,

and prove that the bound in the concurrent setting indeed corresponds to the sequential one.

Our modular approach allows us to simplify the mathematical reasoning within the proof of the

specification and defer all complex combinatiorial reasoning to the meta-level. The proof crucially

relies on both the stateful representation of error probabilities (i.e., error credits) as well as the
notion of randomized logical atomicity, which allows us to presample all randomness in advance.

The key observation is that the probability of false positive follows a simple recurrence. Let

Efp (𝑙, 𝑏) be the probability of observing a false positive for a single membership query after setting

𝑙 uniformly selected indices to 1 in an array that already contains 𝑏 bits set to 1.

Efp (0, 𝑏) ≜ ( 𝑏𝑆 )
𝑘

Efp (𝑙 + 1, 𝑏) ≜ 𝑏
𝑆
· Efp (𝑙, 𝑏) + 𝑆−𝑏

𝑆
· Efp (𝑙, 𝑏 + 1)

Our analysis can therefore assume that every time we hash, we start with E
(
Efp (𝑙 + 1, 𝑏)

)
for some

𝑙 , where 𝑏 is the number of distinct hash outputs that have been observed so far, and then obtain

either E
(
Efp (𝑙, 𝑏)

)
or E

(
Efp (𝑙, 𝑏 + 1)

)
depending on whether or not the output of the hash is a new

one or not. This means that the decision on how to distribute credits can be done locally everytime

we hash a new element.

With this in mind, we can prove the following spec:{
NoDup(xs) ∗ y ∉ xs ∗ E

(
Efp (k · |xs|, 0)

)}
bfMain 𝑥𝑠 𝑦 {𝑣 . 𝑣 = false} (9)

i.e., the probability of false positive is at most Efp (𝑘 · |𝑥𝑠 |, 0), which corresponds to the theoretical

bound given by Bose et al. [14] for the sequential setting
5
. In order to simplify reasoning about

concurrent hashing, we presample the hash outcomes for every key in 𝑥𝑠 in advance, using the

hash specification in §6.1. It is at this point that most reasoning about probabilities takes place, and

that we do the distribution of error credits. After this phase, we have E
(
Efp (0, 𝐵)

)
for some 𝐵, as

well as predicates of the form hashKey 𝛾 𝑘𝑖 𝑣𝑖 for every key and every hash, and we know that

the set of presampled hash outcomes has cardinality 𝐵. Then we execute all insertions, with an

invariant that ensures that the array never has more than 𝐵 elements set to 1. Finally, we can do a

lookup, and use our error credits E
(
Efp (0, 𝐵)

)
to ensure that at least one of the indices we look up

is set to 0, which guarantees that the query returns false.

5
Note that their bound is given as a closed mathematical expression and we have not mechanized that it corresponds to our

recursive definition.
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To the best of our knowledge, we are the first to prove a tight bound on the probability of false

positives for a concurrent Bloom filter (9). For more details on the analysis, we refer the reader to

our Rocq development.

6.3 Lazy Random Sampler
In this section, we consider the implementation of a concurrent lazy one-shot random sampler. This

sampler is lazy in the sense that we only perform the sampling the first time the thunk is invoked

and we store the result in a reference that is read from whenever the thunk is invoked again.

An excerpt of the implementation of the lazy random sampler is shown in Figure 9. The function

lazyRandInit creates a tuple containing a lock and a reference that points to None. When we call

lazyRandf with the tuple and a tape label, we acquire the lock and load the value of what the

location is pointing to. If it is Some𝑥 , we directly return 𝑥 . Otherwise, we sample 𝑥 from the tape

with the function randf 𝜅 from some Rand module and store it into the location. Here the Rand

module is some abstract module that samples {0, . . . , 𝑁 } uniformly from some abstract tape 𝜅,

where 𝑁 is some parameter fixed in advance, i.e. randf 𝜅 acts like a normal rand𝑁 𝜅 (we provide

more details in Appendix C.1). We additionally take in an extra argument 𝑡𝑖𝑑 in lazyRandf and

store it into the location together with the sampled value to also track the first thread id that

succeeds in acquiring the lock and performing the actual randomized operation. We release the

lock right before we return from the function.

lazyRandInit ≜ λ _.

let ℓ = ref None in

let 𝑙𝑜 = newLock () in
(𝑙𝑜, ℓ)

lazyRandf ≜ λ (𝑙𝑜, ℓ), 𝜅, 𝑡𝑖𝑑 .
acquire 𝑙𝑜 ;
let 𝑣 = match ! ℓ with

| Some𝑥 ⇒ 𝑥

| None⇒
let 𝑥 = (randf 𝜅, 𝑡𝑖𝑑) in
ℓ ← Some𝑥 ;𝑥

end in

release 𝑙𝑜 ; 𝑣

Fig. 9. Implementation of a lazy random sampler.

To motivate the specification of this lazy random sampler module, consider a client program

lazyRace that uses the module. In this example, we set the parameter of the internal Rand module

to be 1, so randf samples uniformly between 0 and 1. (The function lazyAllocTape in this example

creates a tape for this lazy random sampler, and we omit the code for brevity.)

lazyRace ≜ let 𝑟 = lazyRandInit () in
(lazyRandf 𝑟 (lazyAllocTape ()) 0) | | | (lazyRandf 𝑟 (lazyAllocTape ()) 1)

In the lazyRace program, we create a lazy random sampler and fork two threads. Each thread

attempts to sample from it but they pass a different 𝑡𝑖𝑑 as the thread id argument. It should be the

case that both threads return the same tuple value 𝑥 = (𝑥1, 𝑥2); intuitively, regardless of how the

threads are scheduled, the thread that is executed last must read the value stored by the the thread

that is executed first. Consider the following specification of lazyRace where for both return values

of the threads, we have 𝑥1 = 𝑥2 with error probability 1/2.
{E (1/2)} lazyRace {𝑣 .∃𝑛. 𝑣 = ((𝑛, 𝑛), (𝑛, 𝑛))}
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This is true morally because whichever threads gets scheduled first to perform the sampling, we can

use E (1/2) to avoid sampling a value from randf that is different from the 𝑡𝑖𝑑 passed, ensuring that

the sampled value is identical to the 𝑡𝑖𝑑 . However, there is some subtlety in the proof of this Hoare

triple. In particular, we cannot perform any presampling in advance of the actual lazyRandf . If we
directly attempt to presample a value to each tape on both threads (avoiding the corresponding

𝑡𝑖𝑑), we need to pay up to E (3/4) error credits because we are doing two presampling calls, where

ideally, we should only need to do one. One might try to rewrite lazyRace such that both threads

share the same tape, but this does not solve the presampling problem directly. In particular, before

either threads call lazyRandf , we do not know what value to sample onto the tape. Whatever value

is presampled, the scheduler can deliberately choose to schedule the threads in a way such that the

𝑡𝑖𝑑 of the winning thread does not match the presampled value. In other words, we want to delay

the operation of presampling and perform it not before the lazyRandf call, but during it.

Given this observation, the specification of the lazy random sampler module is written in a way

that allows presampling to be performed within the lazyRandf call dynamically. We show the

specification for presampling and lazyRandf in Figure 10.

(E𝔘𝑁 [F ] ≤ 𝜀) ∗ isLazyRand 𝑙𝑟 𝑃 𝜄 𝛾 ∗ lazyTape 𝜅 None 𝛾 ∗ E (𝜀) ∗
|⇝⇝E⊎{𝜄} ∃𝑛. E (F (𝑛)) ∗ lazyTape 𝜅 (Some𝑛) 𝛾

(a) Presampling specification.

R 𝑛 ≜


𝑃 𝑛 ∗ lazyAuth 𝑛 𝛾 ∗ 𝑄1 𝑥 𝑦 if 𝑛 = Some(𝑥,𝑦)
∃𝑛′ . lazyTape 𝜅 (Some𝑛′) 𝛾 ∗ (lazyTape 𝜅 None 𝛾 ∗
|⇛⊤𝑃 (𝑛′, 𝑡𝑖𝑑) ∗ lazyAuth (𝑛′, 𝑡𝑖𝑑) 𝛾 ∗ 𝑄2 𝑛

′ 𝑡𝑖𝑑)
if 𝑛 = None

{isLazyRand 𝑙𝑟 𝑃 𝜄 𝛾 ∗ (∀𝑛. 𝑃 𝑛 ∗ lazyAuth 𝑛 𝛾 ∗ |⇝⇝⊤𝑅 𝑛)}
lazyRandf 𝑙𝑟 𝜅 𝑡𝑖𝑑

{(𝑥,𝑦). 𝑄1 𝑥 𝑦 ∨𝑄2 𝑥 𝑦}E

(b) Specification of lazyRandf .

Fig. 10. Excerpt of the specification of the lazy random sampler module.

The presampling specification for the lazy random sampler is not too different from the other

previous examples; the main difference is that the abstract tapes for the module lazyTape stores an
option type instead of a list. Since for each tape, only the first value could ever be relevant in that it

is chosen to be the value stored in the reference, there is no reason to presample more than one

value into a single tape.

Now, let us focus on the more complicated specification for the lazyRandf function. Firstly,

notice that the lazy random sampler predicate isLazyRand takes in an additional predicate 𝑃 as an

argument. Intuitively, 𝑃 is the invariant protected by the lock, and if the reference maps to the

value 𝑛, it is the case that 𝑃 𝑛 holds whenever we access the lock and release it. The precondition of

the lazyRandf function requires two resources. The first being the abstract predicate isLazyRand
and the second being a view shift. The view shift encodes how the state of the module changes

throughout the call. The view shift starts by assuming that we have 𝑃 𝑛 and lazyAuth 𝑛 𝛾 for some

𝑛, which represents the operation of acquiring the lock and gaining access to the authoritative
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state of the lazy random sampler. We then perform a case distinction on 𝑛. If it is Some(𝑥,𝑦), then
this means that the lazy random sampler has already committed to a value, so we return directly

by releasing the lock and establishing some postcondition 𝑄1 𝑥 𝑦. Otherwise, if it is None, we
reach the branch where we have to do a randomized sampling. Here we are allowed to perform

some probabilistic update operation to provide a non-empty lazyTape (since the view shift is

implemented with a |⇝⇝⊤ ), and it suffices to prove that after reading that value 𝑛′ in the tape, we

establish the authoritative part of the lazy random sampler with the reference storing (𝑛′, 𝑡𝑖𝑑) and
some postcondition 𝑄2 𝑛

′ 𝑡𝑖𝑑 . If all preconditions hold, then the return value of the function is

some pair (𝑥,𝑦), where either 𝑄1 𝑥 𝑦 or 𝑄2 𝑥 𝑦 holds.

The key ingenuity of the specification of lazyRandf is that the view shift is described by the |⇝⇝
modality, instead of the regular fancy update modality |⇛, allowing us to perform presampling on

abstract tapes within the function call in addition to outside of it. In particular, we can choose to

perform a presampling action on a tape or not depending on whether the sampler is storing a None
(it has not been invoked before) or not, which we know after a case distinction on the value of 𝑛

after gaining access to the lock. This flexibility allows us to prove the specification of the lazyRace,
by only performing a single presampling within the first invocation of the function call lazyRandf .

6.4 Other Case Studies
Other case studies demonstrating the flexibility of our approach in verifying concurrent randomized

data structures can be found in Appendix C. We define a Rand module that captures the operation

of sampling from a uniform distribution atomically and we provide three implementations that

satisfy it (similar to the implementations in the randomized counter module from §5.3). This is the

abstract Rand module used to implement the lazy random sampler in §6.3. We also implement a

concurrent collision-free hash data structure and show that it meets an amortized specification

where the error required for each operation is amortized across a fixed number of insertions.

7 Semantic Model and Soundness
Coneris is implemented on top of the Iris [25] base logic, which in isolation, is simply a higher-order

separation logic not tied to any specific programming language. In this section, we define the

semantic model of Coneris and explain how to prove the soundness of the program logic.

7.1 Model
Weakest Precondition. The Coneris Hoare triple is defined in terms of a weakest precondition

predicate as follows:

{𝑃} 𝑒 {𝑄} ≜ �(𝑃 ∗ wp 𝑒 {𝑄})
Expressing Hoare triples in term of a weakest precondition is standard for defining program

logics [25], especially for other similar Iris non-probabilistic logics. The definition of the weakest

precondition is however novel, which we detail below. Note that the weakest precondition is defined

as a guarded fixed point: the recursive occurrences of the weakest precondition appear under the

later modality ⊲ on the last line.

wp 𝑒1 {Φ} ≜ ∀𝜎1, 𝜀1. 𝑆 𝜎1 𝜀1 ∗ |⇛⊤ ∅ sstep 𝜎1 𝜀1 {𝜎2, 𝜀2.(
𝑒1 ∈Val ∗ |⇛∅ ⊤𝑆 𝜎2 𝜀2 ∗ Φ 𝑒1

)
∨(

𝑒1 ∉Val ∗ pstep (𝑒1, 𝜎2) 𝜀2 {𝑒2, 𝜎3, 𝑙, 𝜀3.
⊲ sstep 𝜎3 𝜀3 {𝜎4, 𝜀4. |⇛∅ ⊤𝑆 𝜎4 𝜀4 ∗ wp 𝑒2 {Φ} ∗ ∗𝑒′∈𝑙 wp 𝑒′ {True}}})}

One can intuitively understand wp 𝑒 {Φ} as a proposition that describes that 𝑒 is safe, meaning it

does not get stuck, and that for every possible return value 𝑣 , the postcondition Φ 𝑣 holds.
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We now explain the definition of the weakest precondition in detail. At the beginning, we assume

the ownership of a state interpretation 𝑆 𝜎1 𝑒𝑟𝑟1 for some state 𝜎1 and error value 𝜀1. This state

interpretation 𝑆 : State→ R≥0 → iProp gives meaning to the ownership of references ℓ ↦→ 𝑣 , tapes

𝜅 ↩→ (𝑁, ®𝑛), and error credits E (𝜀). The resource algebra used to instantiate the state interpretation
is standard, and we refer the readers to Aguirre et al. [3] for more details.

After that, we perform a view shift through the updatemodality |⇛⊤ ∅ , which intuitivelymeanswe

open all invariants temporarily and that we have access to the resources of all invariants we defined

previously. Following the view shift, we need to prove a state step precondition sstep 𝜎1 𝜀1{. . . }.
The exact definition of the state step precondition is explained later. For now, we can think of the

state step precondition as the modality that allows instantaneous probability-preserving updates

supported by the probabilistic update modality |⇝⇝ 𝑃 . Given state 𝜎1 and error budget 𝜀1, we can

perform any number of probability-preserving updates to step to resulting state 𝜎2 and leftover

error budget 𝜀2, which must satisfy the rest of the continuation.

The next part of the weakest precondition depends on a case split on the expression 𝑒1. In the

first case, where 𝑒1 is a value, we do a view shift |⇛∅ ⊤ where we re-establish all invariants, return
the updated state interpretation and show that the return value 𝑒1 satisfies the postcondition Φ.
Otherwise, if 𝑒1 is not a value, we have to prove a program step precondition pstep (𝑒1, 𝜎2) 𝜀2 {. . .}.
We later explain the specifics of this precondition modality, but for now, one can loosely understand

the connective as somewhat similar to the state step precondition, where we take an actual step

on the configuration (𝑒1, 𝜎2), instead of performing a probabilistic update on 𝜎2. After the single

step to resulting expression 𝑒2, state 𝜎3, forking the list of expressions 𝑙 with leftover error budget

𝜀3, we prove another state step precondition, which we can ignore here.
6
Finally, we re-establish

all invariants after the view shift |⇛∅ ⊤ , return the state interpretation, show that wp 𝑒2 {Φ} holds,
and wp 𝑒′ {True} holds for all 𝑒′ in the forked list 𝑙 .

state-step-err-1

1 ≤ 𝜀
sstep 𝜎 𝜀 {Φ}

state-step-ret

Φ(𝜎, 𝜀)
sstep 𝜎 𝜀 {Φ}

state-step-continuous

∀𝜀′ . 𝜀 < 𝜀′ ∗ sstep 𝜎 𝜀′ {Φ}
sstep 𝜎 𝜀 {Φ}

state-step-exp

E𝜇 [F ] ≤ 𝜀 schErasable(𝜇, 𝜎1) ∀𝜎2. 0 < 𝜇 (𝜎2) ∗ sstep 𝜎2 (F (𝜎2)) {Φ}
sstep 𝜎1 𝜀 {Φ}

Fig. 11. Inductive Definition of the State Step Precondition sstep 𝜎 𝜀 {Φ}.

State and Program Step Preconditions. The state step precondition is defined inductively by

four inference rules presented in Figure 11. Firstly, if the error budget 𝜀 is larger or equal to 1, the

precondition holds trivially as all sub-distributions have mass smaller or equal to 1 (state-step-

err-1). If the predicate Φ holds for the current state and error budget, the precondition also holds

(state-step-ret). The third rule state-step-continuous states that the precondition holds if for

error budget 𝜀′ larger than the 𝜀 (in particular, 𝜀′ can be arbitrarily close to 𝜀), then the precondition

does in fact hold for 𝜀 as well. This is the main rule that allows us to create error credits from thin

air (pupd-err), letting us exploit the fact that the real numbers are complete at the level of Coneris.

Lastly, state-step-exp is the main interesting rule, which relies on the following auxiliary

definition.

6
This extra state step precondition is only used to validate certain invariant opening properties not discussed in this paper.
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Definition 7.1. A distribution on states 𝜇 is a scheduler erasable state update of 𝜎 ∈ State, written
as schErasable(𝜇, 𝜎), if for all schedulers 𝜁 , scheduler states Ξ, thread pools ®𝑒 , and any number of
execution steps 𝑛, we have

(𝜇 ≫= (𝜆 𝜎 ′ . pexec𝜁 ,𝑛 (Ξ, (®𝑒, 𝜎 ′)))).tp = (pexec𝜁 ,𝑛 (Ξ, (®𝑒, 𝜎))) .tp

where we write −.tp for the function that projects out the thread pool component from a distribution
on configurations.

A distribution 𝜇 is thus a scheduler erasable state update of 𝜎 if the probability of executing ®𝑒
from state 𝜎 to any particular list of threads is the same if we first update the state with respect

to 𝜇 and then execute ®𝑒 . Recall that the operational semantics requires schedulers to be invariant

under changes to presampling tapes; such changes thus constitute scheduler erasable state updates.

The state-step-exp rule then states that if we can find a function F : State → [0, 1] and a

distribution 𝜇 : D(State) such that (1) the expectation of F with respect to 𝜇 is at most 𝜀, (2) 𝜇

is scheduler erasable with respect to 𝜎1, and (3) for all 𝜎2, the continuation sstep 𝜎2 (F (𝜎2)) {Φ}
holds, then sstep 𝜎1 𝜀 {Φ} holds. This is the rule that allows us to do presampling on tapes, since

the presampling action is a scheduler erasable operation.

The program step precondition is defined by a single inference rule prog-step-exp. It is similar

to that of state-step-exp, except that we take exactly one step of the configuration (𝑒1, 𝜎1). In
detail, pstep (𝑒1, 𝜎1) 𝜀 {Φ} holds if the configuration (𝑒1, 𝜎1) is reducible and there exists some

function F : Expr × State × List(Expr) → [0, 1] whose expectation with respect to step(𝑒1, 𝜎1) is
smaller or equal to 𝜀, and for all (𝑒2, 𝜎2, 𝑙), the continuation Φ(𝑒2, 𝜎2, 𝑙, F (𝑒2, 𝜎2, 𝑙)) holds.

prog-step-exp

red(𝑒1, 𝜎1) Estep(𝑒1,𝜎1 ) [F ] ≤ 𝜀
∀(𝑒2, 𝜎2, 𝑙). 0 < step(𝑒1, 𝜎1) (𝑒2, 𝜎2, 𝑙) ∗ Φ(𝑒2, 𝜎2, 𝑙, F (𝑒2, 𝜎2, 𝑙))

pstep (𝑒1, 𝜎1) 𝜀 {Φ}

Probabilistic UpdateModality. Recall that the probabilistic updatemodality |⇝⇝E1 E2 𝑃 depends
on two masks E1 and E2. These extra mask parameters are used to track the opening of invariants

and prevent us from opening the same invariant twice (which is unsound). One can understand

|⇝⇝E1 E2 𝑃 as that we can perform a probability-preserving update to get the resources 𝑃 with the

possibility of accessing resources of invariants in the mask E1 and reestablishing resources of

invariants in the mask E2 in the end.

|⇝⇝E1 E2 𝑃 ≜ ∀𝜎1, 𝜀1. 𝑆 𝜎1 𝜀1 ∗ |⇛E1 ∅ sstep 𝜎1 𝜀1 {𝜎2, 𝜀2. |⇛∅ E2 𝑆 𝜎2 𝜀2 ∗ 𝑃}

The definition of the probabilistic update modality resembles a simplified version of the weakest

precondition, where we only perform a single state step. Specifically, |⇝⇝E1 E2 𝑃 holds if after

assuming some state interpretation 𝑆 𝜎1 𝜀1, we can open all invariants in E1 through the view shift

|⇛E1 ∅ , and prove a state step precondition with the input parameters 𝜎1 and 𝜀1. Given resulting

state 𝜎2 and error budget 𝜀2 after the state step precondition, we re-establish all invariants in the

mask E2 with the view shift |⇛∅ E2 and give back the state interpretation and prove the resource 𝑃 .

7.2 Soundness
The soundness of Coneris comes in two flavours, the correctness adequacy theorem Theorem 4.1

and the safety theorem Theorem 4.2. We now briefly describe the overall structure proof of the

correctness adequacy theorem; the proof of the safety theorem is similar and is omitted.

We first prove an intermediate lemma:
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Lemma 7.2. If E (𝜀) ⊢ wp 𝑒 {𝜙} ∗ ∗𝑒′∈®𝑒′ wp 𝑒′ {True}, then for all schedulers 𝜁 , states 𝜎 , and
natural numbers 𝑛, Prexec𝜁 ,𝑛 (𝑒 · ®𝑒′,𝜎 ) [¬𝜙 ] ≤ 𝜀.

This lemma is proven by induction on 𝑛 and structural induction on the state step precondition

fixed point. For each step, we unfold the definition of exec to determine which thread the scheduler

chooses to step next. We unfold the definition of the corresponding weakest precondition proposi-

tion (the one that matches the thread chosen to step), and show that the sstep and pstep modalities

satisfies monadic composition, allowing us to compose the errors.

By taking ®𝑒′ to be the empty list of threads in Lemma 7.2, and taking the limit of 𝑛, we can then

show Prexec𝜁 𝑒 [¬𝜙 ] ≤ 𝜀, which is the goal of the adequacy theorem.

8 Related Work
Approximate Reasoning. There are various approaches for tracking error probabilities in

probabilistic programs. Approximate Hoare logic [6] uses a grading on Hoare triples to approximate

error probabilities. Expectation-based logics such as that of Batz et al. [10], Morgan et al. [31] are

defined with a weakest-precondition-style quantitative predicate transformer that computes the

expected value of a program’s postcondition, which can be used to derive approximate correctness

bounds. Compared to our work, these logics are usually restricted to sequential, first-order impera-

tive programs. Our method of using error credits to track error bounds is first used in Eris [3] to

prove error bounds of sequential higher-order probabilistic programs.

Various other logics also considered reasoning about approximate correctness in the relational

setting. apRHL [5, 9] relates the probability distribution of two programs through approximate

probabilistic couplings, which can then be used to prove differential privacy. Inspired by Eris, error

credits are used in Approxis [21] to prove approximate equivalences of higher-order programs.

Concurrent Probabilistic Program Logics. One of the first program logics developed for

concurrent probabilistic programs is the probabilistic rely-guarantee calculus [29] (that extends

the rely-guarantee logic [24]) that verifies the quantitative correctness of a probabilistic concur-

rent programs without local state. Later, Concurrent Quantitative Separation Logic [17] extends

Quantitative Separation Logic [10] to reason about the lower bounds of probability to realize the

postcondition of concurrent, heap-manipulating, randomized imperative programs. Compared to

our work, it cannot establish strict error bounds that arise between the interleaving of threads (see

the conTwoAdd example in §2) and cannot reason about programs in a (procedure-)modular way.

Polaris [35] is a logic for establishing refinements between concurrent probabilistic programs

and a monadic representation via probabilistic couplings inspired by pRHL [4, 7, 8]. The simpler

monadic model can then be studied to derive properties of the original programs, such as bounds

on its expected value. The language considered by Coneris is inspired by that of Polaris; the syntax

is the same, but in Coneris, we allow schedulers to be probabilistic as well. Compared to Coneris,

Polaris is not as modular in the sense that it does not demonstrate how to compose refinements of

different data structures. It also does not develop an approach for reasoning about logical atomicity.

Lohse and Garg [28] develop ExpIris, a variant of Iris that supports establishing bounds on

the expected cost of concurrent higher-order programs with mutable state. In ExpIris, an upper

bound budget on the number of steps a program can take is written as an additional parameter

of weakest preconditions, called a potential. On randomized steps, this potential can be updated

in an expectation-preserving way, similar to ht-rand-exp. However, because potentials are a

parameter of the weakest precondition, instead of a separation logic resource like error credits, it is

not possible to share them in an invariant, as we saw was necessary for obtaining tight analyzes in

§2. ExpIris also does not provide any facilities to encode the notion of randomized logical atomicity,

which we show is essential to reason about concurrent programs modularly. Although ExpIris
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provides rules for reasoning about concurrency, there are no case studies provided that utilize

concurrent constructs (e.g., the fork construct).

Recently, Probabilistic Concurrent Outcome Logic [38] extends Demonic Outcome Logic [37]

to reason about the distributions of outcomes from concurrent probabilistic programs. Although

this logic is able to prove other probabilistic properties beyond the scope of Coneris, such as inde-

pendence and conditioning, the programs considered are restricted to those without dynamically

allocated state or higher-order functions, and the logic does not support defining ghost state.

Internalization of Linearizability. There is a long line of research on internalizing linearizabil-

ity as a reasoning principle within concurrent program logic specifications. Jacobs and Piessens [23]

first extended the resource-invariants-based method from Owicki and Gries [32] allowing users to

parameterize the specification of concurrent functions with ghost code. Later, Svendsen et al. [34]

further extended their idea and proposed a new style of specification using higher-order concurrent

abstract predicates (HOCAP), building on top of CAP [16]. da Rocha Pinto et al. [15] introduced a

different logic called TaDa, which proposed the use of atomic triples to capture logical atomicity of

programs. There has also been much research in encoding logically atomic specifications within the

Iris separation logic [26, 27]. In Coneris, we take inspiration from these logics, especially HOCAP,

to capture randomized logical atomicity within probabilistic concurrent programs.

9 Conclusion
We presented Coneris, the first concurrent and probabilistic higher-order separation logic for error

bound reasoning. Coneris captures randomized logical atomicity through the novel probabilistic

update modality, enabling modular verification of concurrent programs that is out-of-scope for

previous techniques. We demonstrated the flexibility of Coneris by verifying various examples

modularly, most of which involve local state and intricate reasoning over randomness that arise

from concurrency.

There are various directions for extending Coneris. Firstly, we would like to extend Coneris to

enable verifying strict error bounds of concurrent probabilistic programs under restricted schedulers,

such as those that cannot view the configuration of the program. It is also interesting to explore

whether ideas from Approxis [21] can be used to extend Coneris into the relational setting to

establish approximate bounds between concurrent probabilistic programs. Lastly, we would like to

consider integrating cost credits from Tachis [22] into Coneris to reason about both the expected

work and span time costs of concurrent probabilistic programs.

Acknowledgments
The first author would like to thank Amin Timany for enlightening discussions regarding HOCAP-

style specifications. The authors also thank François Pottier for finding an error in an earlier

description of the example in §2. This workwas supported in part by theNational Science Foundation,

grant no. 2338317, the Carlsberg Foundation, grant no. CF23-0791, a Villum Investigator grant, no.

25804, Center for Basic Research in Program Verification (CPV), from the VILLUM Foundation, and

the European Union (ERC, CHORDS, 101096090). Views and opinions expressed are however those

of the author(s) only and do not necessarily reflect those of the European Union or the European

Research Council. Neither the European Union nor the granting authority can be held responsible

for them.

References
[1] M. Abadi and L. Lamport. 1988. The existence of refinement mappings. In [1988] Proceedings. Third Annual Symposium

on Logic in Computer Science. 165–175. https://doi.org/10.1109/LICS.1988.5115

https://doi.org/10.1109/LICS.1988.5115


1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Kwing Hei Li, Alejandro Aguirre, S. O. Gregersen, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

[2] Martín Abadi and Leslie Lamport. 1991. The existence of refinement mappings. Theoretical Computer Science 82, 2
(1991), 253–284. https://doi.org/10.1016/0304-3975(91)90224-P

[3] Alejandro Aguirre, Philipp G. Haselwarter, Markus de Medeiros, Kwing Hei Li, Simon Oddershede Gregersen, Joseph

Tassarotti, and Lars Birkedal. 2024. Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order

Probabilistic Programs. Proc. ACM Program. Lang. 8, ICFP, Article 246 (Aug. 2024), 33 pages. https://doi.org/10.1145/

3674635

[4] Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2017. Proving uniformity and

independence by self-composition and coupling. In LPAR-21. 21st International Conference on Logic for Programming,
Artificial Intelligence and Reasoning (EPiC Series in Computing, Vol. 46), Thomas Eiter and David Sands (Eds.). EasyChair,

385–403. https://doi.org/10.29007/vz48

[5] Gilles Barthe, Noémie Fong, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2016. Advanced

Probabilistic Couplings for Differential Privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery, New York, NY, USA,

55–67. https://doi.org/10.1145/2976749.2978391

[6] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2016. A Program Logic for

Union Bounds. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 55), Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani,

and Davide Sangiorgi (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 107:1–107:15.

https://doi.org/10.4230/LIPIcs.ICALP.2016.107

[7] Gilles Barthe, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2017. Coupling proofs are probabilistic product

programs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France)
(POPL ’17). Association for Computing Machinery, New York, NY, USA, 161–174. https://doi.org/10.1145/3009837.

3009896

[8] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2012. Probabilistic Relational Hoare Logics for

Computer-Aided Security Proofs. In Mathematics of Program Construction, Jeremy Gibbons and Pablo Nogueira (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 1–6.

[9] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella-Béguelin. 2013. Probabilistic Relational Reasoning

for Differential Privacy. ACM Trans. Program. Lang. Syst. 35, 3, Article 9 (Nov. 2013), 49 pages. https://doi.org/10.

1145/2492061

[10] Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2019. Quantitative

separation logic: a logic for reasoning about probabilistic pointer programs. Proc. ACM Program. Lang. 3, POPL, Article
34 (Jan. 2019), 29 pages. https://doi.org/10.1145/3290347

[11] Mihir Bellare and Phillip Rogaway. 1993. Random oracles are practical: a paradigm for designing efficient protocols. In

Proceedings of the 1st ACM Conference on Computer and Communications Security (Fairfax, Virginia, USA) (CCS ’93).
Association for Computing Machinery, New York, NY, USA, 62–73. https://doi.org/10.1145/168588.168596

[12] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable Errors. Commun. ACM 13, 7 (1970),

422–426. https://doi.org/10.1145/362686.362692

[13] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. 2013. Coquelicot: A User-Friendly Library of Real Analysis

for Coq. (Sept. 2013). https://inria.hal.science/hal-00860648 working paper or preprint.

[14] Prosenjit Bose, Hua Guo, Evangelos Kranakis, Anil Maheshwari, Pat Morin, Jason Morrison, Michiel H. M. Smid,

and Yihui Tang. 2008. On the false-positive rate of Bloom filters. Inf. Process. Lett. 108, 4 (2008), 210–213. https:

//doi.org/10.1016/J.IPL.2008.05.018

[15] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A Logic for Time and Data

Abstraction. In ECOOP 2014 – Object-Oriented Programming, Richard Jones (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 207–231.

[16] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor Vafeiadis. 2010. Concurrent

Abstract Predicates. In ECOOP 2010 – Object-Oriented Programming, Theo D’Hondt (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 504–528.

[17] Ira Fesefeldt, Joost-Pieter Katoen, and Thomas Noll. 2022. Towards Concurrent Quantitative Separation Logic. In

33rd International Conference on Concurrency Theory (CONCUR 2022) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 243), Bartek Klin, Sławomir Lasota, and Anca Muscholl (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, Dagstuhl, Germany, 25:1–25:24. https://doi.org/10.4230/LIPIcs.CONCUR.2022.25

[18] WojciechM. Golab, Lisa Higham, and PhilippWoelfel. 2011. Linearizable implementations do not suffice for randomized

distributed computation. In Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA,
USA, 6-8 June 2011, Lance Fortnow and Salil P. Vadhan (Eds.). ACM, 373–382. https://doi.org/10.1145/1993636.1993687

[19] Kiran Gopinathan and Ilya Sergey. 2020. Certifying Certainty and Uncertainty in Approximate Membership Query

Structures. In Computer Aided Verification - 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24,

https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1145/3674635
https://doi.org/10.1145/3674635
https://doi.org/10.29007/vz48
https://doi.org/10.1145/2976749.2978391
https://doi.org/10.4230/LIPIcs.ICALP.2016.107
https://doi.org/10.1145/3009837.3009896
https://doi.org/10.1145/3009837.3009896
https://doi.org/10.1145/2492061
https://doi.org/10.1145/2492061
https://doi.org/10.1145/3290347
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/362686.362692
https://inria.hal.science/hal-00860648
https://doi.org/10.1016/J.IPL.2008.05.018
https://doi.org/10.1016/J.IPL.2008.05.018
https://doi.org/10.4230/LIPIcs.CONCUR.2022.25
https://doi.org/10.1145/1993636.1993687


1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Modular Reasoning about Error Bounds for Concurrent Probabilistic Programs 29

2020, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 12225), Shuvendu K. Lahiri and Chao Wang (Eds.).

Springer, 279–303. https://doi.org/10.1007/978-3-030-53291-8_16

[20] Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal. 2024.

Asynchronous Probabilistic Couplings in Higher-Order Separation Logic. Proc. ACM Program. Lang. 8, POPL, Article
26 (Jan. 2024), 32 pages. https://doi.org/10.1145/3632868

[21] Philipp G. Haselwarter, Kwing Hei Li, Alejandro Aguirre, Simon Oddershede Gregersen, Joseph Tassarotti, and Lars

Birkedal. 2025. Approximate Relational Reasoning for Higher-Order Probabilistic Programs. Proc. ACM Program. Lang.
9, POPL, Article 41 (Jan. 2025), 31 pages. https://doi.org/10.1145/3704877

[22] Philipp G. Haselwarter, Kwing Hei Li, Markus de Medeiros, Simon Oddershede Gregersen, Alejandro Aguirre, Joseph

Tassarotti, and Lars Birkedal. 2024. Tachis: Higher-Order Separation Logic with Credits for Expected Costs. Proc.
ACM Program. Lang. 8, OOPSLA2, Article 313 (Oct. 2024), 30 pages. https://doi.org/10.1145/3689753

[23] Bart Jacobs and Frank Piessens. 2011. Expressive modular fine-grained concurrency specification. SIGPLAN Not. 46, 1
(Jan. 2011), 271–282. https://doi.org/10.1145/1925844.1926417

[24] Cliff Jones. 1983. Specification and Design of (Parallel) Programs. Proceedings Of Ifip Congress ’ 83, 321–332.
[25] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from

the ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.
https://doi.org/10.1017/S0956796818000151

[26] Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs.

2019. The future is ours: prophecy variables in separation logic. Proc. ACM Program. Lang. 4, POPL, Article 45 (Dec.
2019), 32 pages. https://doi.org/10.1145/3371113

[27] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015.

Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015.
637–650. https://doi.org/10.1145/2676726.2676980

[28] Janine Lohse and Deepak Garg. 2024. An Iris for Expected Cost Analysis. arXiv:2406.00884 [cs.PL]

[29] Annabelle McIver, Tahiry Rabehaja, and Georg Struth. 2016. Probabilistic rely-guarantee calculus. Theoretical Computer
Science 655 (2016), 120–134. https://doi.org/10.1016/j.tcs.2016.01.016 Quantitative Aspects of Programming Languages

and Systems (2013-14).

[30] Arno Mittelbach and Marc Fischlin. 2021. The Theory of Hash Functions and Random Oracles - An Approach to Modern
Cryptography. Springer. https://doi.org/10.1007/978-3-030-63287-8

[31] Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic predicate transformers. ACM Trans. Program.
Lang. Syst. 18, 3 (May 1996), 325–353. https://doi.org/10.1145/229542.229547

[32] Susan Owicki and David Gries. 1976. Verifying properties of parallel programs: an axiomatic approach. Commun.
ACM 19, 5 (May 1976), 279–285. https://doi.org/10.1145/360051.360224

[33] Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning. Theoretical Computer Science 375, 1 (2007),
271–307. https://doi.org/10.1016/j.tcs.2006.12.035 Festschrift for John C. Reynolds’s 70th birthday.

[34] Kasper Svendsen, Lars Birkedal, and Matthew Parkinson. 2013. Modular Reasoning about Separation of Concurrent

Data Structures. In Programming Languages and Systems, Matthias Felleisen and Philippa Gardner (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 169–188.

[35] Joseph Tassarotti and Robert Harper. 2019. A separation logic for concurrent randomized programs. Proc. ACM
Program. Lang. 3, POPL, Article 64 (Jan. 2019), 30 pages. https://doi.org/10.1145/3290377

[36] The Rocq Development Team. 2024. The Rocq Prover. https://doi.org/10.5281/zenodo.11551307

[37] Noam Zilberstein, Dexter Kozen, Alexandra Silva, and Joseph Tassarotti. 2025. A Demonic Outcome Logic for

Randomized Nondeterminism. Proc. ACM Program. Lang. 9, POPL, Article 19 (Jan. 2025), 30 pages. https://doi.org/10.

1145/3704855

[38] Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti. 2024. Probabilistic Concurrent Reasoning in Outcome Logic:

Independence, Conditioning, and Invariants. arXiv:2411.11662 [cs.LO] https://arxiv.org/abs/2411.11662

https://doi.org/10.1007/978-3-030-53291-8_16
https://doi.org/10.1145/3632868
https://doi.org/10.1145/3704877
https://doi.org/10.1145/3689753
https://doi.org/10.1145/1925844.1926417
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.1145/2676726.2676980
https://arxiv.org/abs/2406.00884
https://doi.org/10.1016/j.tcs.2016.01.016
https://doi.org/10.1007/978-3-030-63287-8
https://doi.org/10.1145/229542.229547
https://doi.org/10.1145/360051.360224
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1145/3290377
https://doi.org/10.5281/zenodo.11551307
https://doi.org/10.1145/3704855
https://doi.org/10.1145/3704855
https://arxiv.org/abs/2411.11662
https://arxiv.org/abs/2411.11662


1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Kwing Hei Li, Alejandro Aguirre, S. O. Gregersen, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

A Modular Proof of conTwoAdd
In this section, we show in more detail how to prove conTwoAdd with the HOCAP-style specifica-

tions of the randomized counter module (see Figure 5).

Before we proceed, we present a selection of side conditions of the abstract predicates in Figure 12

which we previously omitted in Figure 5. The first side condition expresses that the counter

representation predicate is persistent, which means that it is duplicable so that clients can share

it among several threads. We then have a series of side conditions regarding the cauth and cfrag
abstract predicates, which are used to keep track of the abstract state of the counter. The first

condition states that cfrag abstract predicates can be combined by adding their arguments together.

The next condition states that if we hold both the cauth and cfrag resource and the fraction of the

cfrag is exactly 1, the value from both predicates agree. The last side condition describes how we

can update the abstract state of a counter: if we have a cauth and a cfrag predicate with the same

ghost name, we can update the predicates by incrementing the values of both by a constant 𝑥 .

𝐶 𝜄 𝛾 𝑐 ∗ �𝐶 𝜄 𝛾 𝑐

cfrag 𝛾 𝑓 𝑧 ∗ cfrag 𝛾 𝑓 ′ 𝑧′ ∗ cfrag 𝛾 (𝑓 + 𝑓 ′) (𝑧 + 𝑧′)
cauth 𝛾 𝑧 ∗ cfrag 𝛾 1 𝑧′ ∗ 𝑧′ = 𝑧
cauth 𝛾 𝑧 ∗ cfrag 𝛾 𝑓 𝑧′ ∗ |⇛cauth 𝛾 (𝑧 + 𝑥) ∗ cfrag 𝛾 𝑓 (𝑧′ + 𝑥)

Fig. 12. Selection of Side Conditions on Abstract Predicates

Recall that since the new specification of the randomized concurrent counter utilizes tapes, the

conTwoAdd client is annotated to use the abstract tapes.

conTwoAdd ≜ let 𝑐 = createCntr () in( let 𝜅 = createCtape() in
incrCntr 𝑐 𝜅 | | | let 𝜅 = createCtape() in

incrCntr 𝑐 𝜅
)
;

readCntr 𝑐

We now prove that the return value is 0 with a probability of 1/16, with the Coneris Hoare triple:

{E (1/16)} conTwoAdd {𝑣 .𝑣 > 0} .
We first consider the invariant used to track the change in shared state during the parallel

composition. We use two states 𝑆0 and 𝑆1 (𝑛) (of some inductive type 𝑇 ) to track the state of the

threads, with 𝑆0 representing the state where the thread has not sampled a value yet and 𝑆1 (𝑛)
representing it sampled 𝑛. Note that we do not need an additional state to track whether the sampled

value has been added into the counter, because that can be tracked by the resource cfrag. We use

the invariant 𝐼 shown below to capture the shared state of the two threads. Notice that the invariant

𝐼 makes use of the exclusive-authoritative ghost resource algebra, which consists of the authoritative
part •𝑥 and the fragment part ◦𝑥 . We omit the definition and properties of this resource and we

refer readers to Jung et al. [25] for more information.

sampled 𝑠 ≜ match 𝑠 with 𝑆0 ⇒ None | 𝑆1 (𝑛) ⇒ Some𝑛 end

onePositive 𝑠1 𝑠2 ≜ ∃𝑛. 𝑛 > 0 ∧ (sampled 𝑠1 = Some𝑛 ∨ sampled 𝑠2 = Some𝑛)
𝐼 (𝛾1, 𝛾2) ≜ ∃(𝑠1 𝑠2 : 𝑇 ). •𝑠1

𝛾1 ∗ •𝑠2
𝛾2 ∗

if onePositive 𝑠1 𝑠2 then E (0)

else E
(
4
(bool_to_nat(sampled 𝑠1=Some 0)+bool_to_nat(sampled 𝑛2=Some 0)−2)

)
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We now show how to prove the specification of conTwoAdd using the invariant previously defined.

After stepping through the code up until the parallel composition component, and allocating the

necessary resources and invariant, we arrive at the following proof obligation:{
𝐶 𝜄 𝛾 𝑐 ∗ cfrag 𝛾 1 0 ∗ 𝐼 (𝛾1, 𝛾2)

𝜄′ ∗
◦𝑆0

𝛾1 ∗ ◦𝑆0
𝛾2

}
let . . . | | | let . . . ;
readCntr 𝑐 {𝑣 . 𝑣 > 0}

We can apply the side condition of cfrag to split it between the two threads and apply the rule for

parallel composition which leaves us with the following three obligations:{
𝐶 𝜄 𝛾 𝑐 ∗ 𝐼 (𝛾1, 𝛾2)

𝜄′ ∗ cfrag 𝛾 0.5 0 ∗ ◦𝑆0
𝛾1
}
let . . .

{
∃𝑛. cfrag 𝛾 0.5 𝑛 ∗ ◦𝑆1 (𝑛)

𝛾1
}

(10){
𝐶 𝜄 𝛾 𝑐 ∗ 𝐼 (𝛾1, 𝛾2)

𝜄′ ∗ cfrag 𝛾 0.5 0 ∗ ◦𝑆0
𝛾2
}
let . . .

{
∃𝑛. cfrag 𝛾 0.5 𝑛 ∗ ◦𝑆2 (𝑛)

𝛾1
}

(11){
𝐶 𝜄 𝛾 𝑐 ∗ cfrag 𝛾 1 (𝑛1 + 𝑛2) ∗ 𝐼 (𝛾1, 𝛾2)

𝜄′ ∗
◦𝑆1 (𝑛1)

𝛾1 ∗ ◦𝑆1 (𝑛2)
𝛾2

}
readCntr 𝑐 {𝑣 . 0 < 𝑣} (12)

Let us first focus on Equation (10). We first apply the specification for createCtape to create an

empty tape resource and we arrive at the following obligation.{
𝐶 𝜄 𝛾 𝑐 ∗ 𝐼 (𝛾1, 𝛾2)

𝜄′ ∗ cfrag 𝛾 0.5 0 ∗
◦𝑆0

𝛾1 ∗ ctape 𝜅 𝜖

}
incrCntr 𝑐 𝜅

{
∃𝑛. cfrag 𝛾 0.5 𝑛 ∗ ◦𝑆1 (𝑛)

𝛾1
}

Now that we have a ctape predicate on our hands, we can presample a value onto it so that it can

be used for the incrCntr method later. Specifically, we perform the following probabilistic update:

𝐼 (𝛾1, 𝛾2)
𝜄′ ∗ ◦𝑆0

𝛾1 ∗ ctape 𝜅 𝜖 ∗ |⇝⇝⊤ ∃𝑛. ◦𝑆1 (𝑛)
𝛾1 ∗ ctape 𝜅 [𝑛]

This probabilistic update proposition is proven by first applying the probabilistic update modality

version of inv-open where we access the resources within the invariant, and subsequently updating

the authoritative resource pairs from the state 𝑆0 to 𝑆1 (𝑛) to track the value 𝑛 presampled onto the

tape. After this probabilistic update, we are left with the following obligation:{
𝐶 𝜄 𝛾 𝑐 ∗ 𝐼 (𝛾1, 𝛾2)

𝜄′ ∗ cfrag 𝛾 0.5 0 ∗
◦𝑆1 (𝑛)

𝛾1 ∗ ctape 𝜅 [𝑛]

}
incrCntr 𝑐 𝜅

{
∃𝑛. cfrag 𝛾 0.5 𝑛 ∗ ◦𝑆1 (𝑛)

𝛾1
}

The rest of the proof then follows almost directly by applying the new specification for incrCntr
and choosing 𝑄 𝑧 ≜ cfrag 𝛾 0.5 𝑛. The second obligation (Equation (11)), representing the behavior

of the second thread, is proven in an almost identical fashion.

Let us now focus on the last obligation (Equation (12)). To prove that the return value is positive,

we apply the specification of readCntr , choosing 𝑄 𝑣 ≜ 𝑣 > 0, leaving us with the following view

shift obligation for the precondition:

𝐼 (𝛾1, 𝛾2)
𝜄′ ∗ cfrag 𝛾 1 (𝑛1 + 𝑛2) ∗ ◦𝑆1 (𝑛1)

𝛾1 ∗ ◦𝑆1 (𝑛2)
𝛾2 ∗

(∀𝑧. cauth 𝛾 𝑧 ∗ |⇛⊤\𝜄 cauth 𝛾 𝑧 ∗ 𝑧 > 0)

We do a case split on the values of 𝑛1 and 𝑛2. If they are both 0, we can open the invariant 𝐼 (𝛾1, 𝛾2)
to access a E (1) error credit to derive a contradiction with err-1. Otherwise, using the rules for

cauth and cfrag, we can show that the values in the cauth and cfrag predicates coincide, i.e. they

are both 𝑛1 + 𝑛2 and must be positive, which completes the proof.
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B HOCAP-style Specification with Error Redistribution
In §5.1, we presented a HOCAP-style specification that does not expose presampling tapes as

an abstract predicate (see Figure 4). Although in §5.2 we showed that it is less general than the

specification with ctape shown in Figure 5, in this section, we briefly explain how to use the

specification to prove clients of the module and how to show various implementations meet the

specification.

B.1 Implementation
We first show three possible implementations of the module that mirror those shown in §5.3.

For 𝐼1, we do not need to allocate any tapes and we sample from rand 3 directly. However, note

incrCntr1 ≜ 𝜆 𝑙 . faa 𝑙 (rand 3)
incrCntr2 ≜ 𝜆 𝑙 . let 𝜅 = tape 1 in

faa 𝑙 (rand𝜅 1 ∗ 2 + rand𝜅 1)
incrCntr3 ≜ 𝜆 𝑙 . let 𝜅 = tape 4 in

(rec 𝑓 𝜅 =

let 𝑥 = rand𝜅 4 in

if 𝑥 < 4 then faa 𝑙 𝑥 else 𝑓 𝜅) 𝜅

Fig. 13. Three Implementations of Increment

that for 𝐼2 and 𝐼3, we have to create a tape internally and sample from it. This is because the

randomization within the two implementations occurs over various steps even if it acts “logically

atomic”. By adding extra ghost code that utilizes tapes, we are able to reason about the randomness

asynchronously, which we demonstrate in later subsections.

B.2 Verification of Client of HOCAP-style Specification with Error Redistribution
We now verify the conTwoAdd example in §5.2 with the specification from Figure 4. Since tapes are

not exposed in this specification, conTwoAdd is written without explicit allocation of ctape.

conTwoAdd ≜ let 𝑐 = createCntr () in
(incrCntr 𝑐 | | | incrCntr 𝑐);
readCntr 𝑐

As before, we want to verify that the final read value is positive, with error probability 1/16,
which we show with the following Coneris Hoare triple.

{E (1/16)} conTwoAdd {𝑣 .𝑣 > 0}

In fact the proof works almost identically to that presented in §5.2. For example, the states and

invariants used to track the shared state of the two parallel threads are identical to the ones used

before.
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We begin by stepping through the code up until the parallel composition component, and after

allocating the necessary resources and invariant, we arrive at the following proof obligation:{
𝐶 𝜄 𝛾 𝑐 ∗ cfrag 𝛾 1 0 ∗ 𝐼 (𝛾1, 𝛾2)

𝜄′ ∗ ◦𝑆0
𝛾1 ∗ ◦𝑆0

𝛾2
}

incrCntr 𝑐 | | | incrCntr 𝑐;
readCntr 𝑐

{𝑣 . 𝑣 > 0}

We can apply the side condition of cfrag to split it between the two threads and apply the rule for

parallel composition, leaving us with the following three obligations:{
𝐶 𝜄 𝛾 𝑐 ∗ 𝐼 (𝛾1, 𝛾2)

𝜄′ ∗ cfrag 𝛾 0.5 0 ∗ ◦𝑆0
𝛾1
}
incrCntr 𝑐

{
∃𝑛. cfrag 𝛾 0.5 𝑛 ∗ ◦𝑆1 (𝑛)

𝛾1
}

(13){
𝐶 𝜄 𝛾 𝑐 ∗ 𝐼 (𝛾1, 𝛾2)

𝜄′ ∗ cfrag 𝛾 0.5 0 ∗ ◦𝑆0
𝛾2
}
incrCntr 𝑐

{
∃𝑛. cfrag 𝛾 0.5 𝑛 ∗ ◦𝑆2 (𝑛)

𝛾1
}

(14){
𝐶 𝜄 𝛾 𝑐 ∗ cfrag 𝛾 1 (𝑛1 + 𝑛2) ∗ 𝐼 (𝛾1, 𝛾2)

𝜄′ ∗ ◦𝑆1 (𝑛1)
𝛾1 ∗ ◦𝑆1 (𝑛2)

𝛾2
}
readCntr 𝑐 {𝑣 . 0 < 𝑣} (15)

We focus only on the first obligation; the second obligation follows similarly and the third obligation

is similar to the proof of Equation (12) in §5.2. From Equation (13), we apply the specification of

incrCntr directly, choosing 𝑄 𝜀 F 𝑛 𝑧 ≜ cfrag 𝛾 0.5 𝑛 ∗ ◦𝑆1 (𝑛)
𝛾1
. It then suffices to prove the

following view shift for the precondition of the specification:

𝐼 (𝛾1, 𝛾2)
𝜄′ ∗ cfrag 𝛾 0.5 0 ∗ ◦𝑆0

𝛾1 ∗
|⇛E ∅∃𝜀 F . E (𝜀) ∗ (E𝔘3

[F ] ≤ 𝜀) ∗
(∀𝑥 . 0 ≤ 𝑥 < 4 ∗ E (F (𝑥)) ∗ |⇛∅ E

(∀𝑧. cauth 𝛾 𝑧 ∗ |⇛E\𝜄 cauth 𝛾 (𝑧 + 𝑥) ∗ cfrag 𝛾 0.5 𝑥 ∗ ◦𝑆1 (𝑥)
𝛾1 ))

We first open our invariant 𝐼 (𝛾1, 𝛾2) while stripping away the |⇛E ∅ mask, which allows us to access

the error credit stored in the invariant. After choosing the right F based on a case analysis on the

state of the right thread (which we omit for brevity), we update the authoritative resource pairs

from •𝑆0
𝛾1 ∗ ◦𝑆0

𝛾1
to •𝑆1 (𝑥)

𝛾1 ∗ ◦𝑆1 (𝑥)
𝛾1
and re-establish the invariant 𝐼 while removing the

|⇛∅ E mask, leaving us with the following state:

𝐼 (𝛾1, 𝛾2)
𝜄′ ∗ cfrag 𝛾 0.5 0 ∗ ◦𝑆1 (𝑥)

𝛾1 ∗
cauth 𝛾 𝑧 ∗ |⇛E\𝜄 cauth 𝛾 (𝑧 + 𝑥) ∗ cfrag 𝛾 0.5 𝑥 ∗ ◦𝑆1 (𝑥)

𝛾1

After incrementing both the cauth and cfrag components by exactly 𝑥 through the |⇛E\𝜄 mask

(which is possible by the side conditions of cauth and cfrag), we can then directly establish the final

goal.

B.3 Proving that 𝐼1, 𝐼2, and 𝐼3 Satisfy the HOCAP-style Specification with Error
Redistribution

We now briefly describe how each of the three randomized counter implementations meets the

specificationwith error redistribution in Figure 4. The concrete definitions for the abstract predicates

are actually identical to those used in the proof of §5.2. For example, the counter predicate is still

defined as

∃(𝑙 : Loc) (𝑛 : nat). 𝑐 = 𝑙 ∗ 𝑙 ↦→ 𝑛 ∗ cauth 𝛾 𝑛 𝜄
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It then suffices to show that the functions createCntr, incrCntr , and readCntr satisfy the HOCAP-

style specification. We focus on the incrCntr specification since it is the most complicated; the other

two functions can be verified in a similar, if not easier, fashion.

For 𝐼1, after symbolically stepping through the program, we are left with the following obligation:
𝐶 𝜄 𝛾 𝑐 ∗ ( |⇛E ∅∃𝜀 F . E (𝜀) ∗ (E𝔘3

[F ] ≤ 𝜀) ∗
(∀𝑥 . 0 ≤ 𝑥 < 4 ∗ E (F (𝑥)) ∗ |⇛∅ E
(∀𝑧. cauth 𝛾 𝑧 ∗ |⇛E\𝜄 cauth 𝛾 (𝑧 + 𝑥) ∗ 𝑄 𝜀 F 𝑥 𝑧)))


faa 𝑐 (rand 3) {𝑧.∃𝜀 F 𝑥 . 𝑄 𝜀 F 𝑥 𝑧}E

We first open the |⇛E ∅ mask around the atomic rand 3 operation. After opening the first view shift,

we are given some E (𝜀) and some F such that the expected sum of F is smaller than 𝜀. We then

apply ht-rand-exp to distribute the errors across the various results and close the |⇛∅ E mask,

leaving us with the following obligation:{
𝐶 𝜄 𝛾 𝑐 ∗ (∀𝑧. cauth 𝛾 𝑧 ∗ |⇛E\𝜄 cauth 𝛾 (𝑧 + 𝑥) ∗ 𝑄 𝜀 F 𝑥 𝑧)

}
faa 𝑐 𝑥 {𝑧.∃𝜀 F 𝑥 . 𝑄 𝜀 F 𝑥 𝑧}E

Since the faa operation is atomic, we can open the invariant 𝐶 around the expression, resulting in

this goal: {
𝑙 ↦→ 𝑛 ∗ cauth 𝛾 𝑛 ∗ (∀𝑧. . . . )

}
faa 𝑙 𝑥 {𝑧.∃(𝑛 : nat). 𝑙 ↦→ 𝑛 ∗ cauth 𝛾 𝑛 ∗ ∃𝜀 F 𝑥 . 𝑄 𝜀 F 𝑥 𝑧}E\𝜄

The rest of the proof follows nicely from the proof rule for the faa operation, completing the proof.

For 𝐼2, we similarly step through the program, where we additionally allocate a tape 𝜅 , and thus

we arrive at the following goal:
𝐶 𝜄 𝛾 𝑐 ∗ 𝜅 ↩→ (1, 𝜖) ∗ ( |⇛E ∅∃𝜀 F .
E (𝜀) ∗ (E𝔘3

[F ] ≤ 𝜀) ∗
(∀𝑥 . 0 ≤ 𝑥 < 4 ∗ E (F (𝑥)) ∗ |⇛∅ E
(∀𝑧. cauth 𝛾 𝑧 ∗ |⇛E\𝜄 cauth 𝛾 (𝑧 + 𝑥) ∗ 𝑄 𝜀 F 𝑥 𝑧)))


faa 𝑙 (rand𝜅 1 ∗ 2 + rand𝜅 1) {𝑧.∃𝜀 F 𝑥 . 𝑄 𝜀 F 𝑥 𝑧}E

From here, we directly open the |⇛E ∅ and access the E (𝜀) error credit. Then, unlike what we did
for 𝐼1, here we perform a probabilistic update where we presample two values 𝑣1, 𝑣2 onto the tape

𝜅, and we distribute E (𝑣1 ∗ 2 + 𝑣2) for each branch, i.e., we update the resources via the following

lemma (in this instance, ®𝑛 is instantiated to be the empty tape list 𝜖). This follows from Equation (7)

which we proved previously.

After closing the |⇛∅ E mask, we are left with the following obligation:{
𝐶 𝜄 𝛾 𝑐 ∗ 𝜅 ↩→ (1, [𝑣1, 𝑣2]) ∗
(∀𝑧. cauth 𝛾 𝑧 ∗ |⇛E\𝜄 cauth 𝛾 (𝑧 + 𝑣1 ∗ 2 + 𝑣2) ∗ 𝑄 𝜀 F (𝑣1 ∗ 2 + 𝑣2) 𝑧)

}
faa 𝑙 (rand𝜅 1 ∗ 2 + rand𝜅 1) {𝑧.∃𝜀 F 𝑥 . 𝑄 𝜀 F 𝑥 𝑧}E

We can then read the values of the tape directly for both samples:{
𝐶 𝜄 𝛾 𝑐 ∗ 𝜅 ↩→ (1, 𝜖) ∗
(∀𝑧. cauth 𝛾 𝑧 ∗ |⇛E\𝜄 cauth 𝛾 (𝑧 + 𝑣1 ∗ 2 + 𝑣2) ∗ 𝑄 𝜀 F (𝑣1 ∗ 2 + 𝑣2) 𝑧)

}
faa 𝑙 (𝑣1 ∗ 2 + 𝑣2) {𝑧.∃𝜀 F 𝑥 . 𝑄 𝜀 F 𝑥 𝑧}E

From here, the fetch-and-atomic-add step is similar to that for the 𝐼1 implementation.
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∀𝜀 F 𝜄 E 𝜅 𝛾 ®𝑛.
(E𝔘𝑁 [F ] ≤ 𝜀) ∗
𝜄 ∈ E ∗
isRand 𝜄 𝛾 ∗
randTape 𝜅 ®𝑛 𝛾 ∗
E (𝜀) ∗
|⇝⇝E ∃𝑛. E (F (𝑛)) ∗ randTape 𝜅 (®𝑛 · [𝑛]) 𝛾

ª®®®®®®®®®¬
(a) Presampling specification

∀𝜄 𝛾 𝜅 𝑛 ®𝑛 E .{
𝜄 ∈ E ∗ isRand 𝜄 𝛾 ∗ ctape 𝜅 (𝑛 · ®𝑛)

}
randf 𝜅 {𝑧.𝑧 = 𝑛 ∗ randTape 𝜅 ®𝑛}E

(b) randf specification

Fig. 14. Selection of Specification of Rand Module

The proof of 𝐼3 is very similar to that of 𝐼2, except for the presampling step after allocating the

tape resource. In particular we want to show that we can repeatedly presample enough values

into the tape such that the last element is smaller than 4 and all values beforehand are 4, while

distributing the error credit according to the final value. Here we use Equation (8) proved previously

to do so.

After performing the probabilistic update on the tape (such that it contains an “accepted” value

at the end), we can then step through the rest of the program, looping repeatedly until we reach

the final “accepted” value and establish the postcondition.

C Other Case Studies
C.1 Rand Module
For the random counter module introduced previously in §5.1, we identified three distinct imple-

mentations (§5.3) that sample randomness from a uniform distribution for the incrCntr operation,
e.g. we can directly call a single rand (𝐼1), chain various rands together (𝐼2), or use a rejection

sampler method where we repeatedly sample until we obtain a desirable value (𝐼3). We now define a

general interface, which we refer to as the Rand module, that captures what it means to sample from

a uniform distribution atomically, and show that several implementations satisfy it. In later case

studies, we use this interface to verify larger programs, to highlight the usability of this module

and to demonstrate modular reasoning.

The Rand module is parameterized by a natural number 𝑁 , which is the range of the uniform

distribution (we are sampling uniformly from {0, . . . , 𝑁 }). The interface exposes two functions,

randAllocate and randf , which creates a tape and samples from it, respectively. It also describes

various abstract predicates, their side conditions, and specifications of the functions, most notably

the specification that allows clients to presample into the abstract tape randTape, and reading from

it with randf , which we present in Figure 14.

The first condition states that when given the isRand invariant, a randTape abstract predicate,
and some error credits, we can append a value at the end of the tape and split the errors in an

expectation-preserving way, similar to the presampling specification presented in the random

counter module. The second condition states that given the isRand invariant and a non-empty tape,

we can run randf on the tape to deterministically pop the tape and return its first element.

By choosing concrete definitions for the abstract predicates of this module, one can show that

various implementations of random samplers satisfy this Rand module specification; e.g. we proved

that a rejection sampler meets the specification of the Rand module (the proof is similar to showing

that implementation 𝐼3 of the randomized counter module meets its specification).
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C.2 Concurrent Amortized Collision-free Hash
When proving the correctness of randomized data structures, it is useful to assume that a hash

function is collision-free, in that different input keys for the function return different hash values.

In reality, collisions might occur but with very low probabilities.

Here, we first consider a concurrent collision-free hash, one that can be shared among many

threads, and each thread pays error credits to avoid collisions for every presampling action. Because

we want to be able to use the hash in a concurrent context, the specification of the hash is written

in a HOCAP-style with presampling tapes exposed to allow modular reasoning. We implement

a concurrent model of the idealized hash function under the uniform hash assumption [11]. The

assumption states that the hash function hashf mapping sets of keys𝐾 to hash values𝑉 is a random

oracle, in that for each key 𝑘 ∈ 𝐾 , the hash value ℎ(𝐾) is sampled uniformly from 𝑉 independently

of all other keys. We implement this model as a tuple containing a lock and a mutable map 𝑙𝑚,

choosing 𝐾 and 𝑉 to be {0, . . . , 𝑁 }. The main hash function hashf is shown below. The lock is

acquired and released around the body of the hash function to ensure that at most one thread is

changing the state of the mutable map. In the critical section, if the key 𝑘 has been hashed before,

we directly return 𝑙𝑚(𝑘). Otherwise, we sample a fresh value uniformly from 𝑉 with the randf
function defined in Appendix C.1, read a value from the tape 𝜅, store it in 𝑙𝑚(𝑘), and return it at

the end.

hashf (𝑙𝑜, 𝑙𝑚) 𝑘 𝜅 ≜ acquire 𝑙𝑜 ;

let 𝑣 = match get 𝑙𝑚 𝑘 with

| Some(𝑏) ⇒ 𝑏

|None⇒ let 𝑏 = randf 𝜅 in
set 𝑙𝑚 𝑘 𝑏;

𝑏

end in

release 𝑙𝑜 ; 𝑣

We show the presampling specification and the specification for hashf in Figure 15. To achieve

collision-freedom, we need to ensure that every value we presample to a tape generated by the hash

is different from any value previously presampled to all tapes generated by the hash. To be precise,

suppose we have presampled a total of 𝑠 values on all tapes of the hash. If we want to presample a

new value to a tape, we need to pay at least E
(
𝑠

𝑁+1
)
to sample a unique value different from all

values presampled before. To keep track of all the values sampled before, the interface introduces

a hashsize abstract predicate that stores the set of all values that has been presampled before.

To presample onto a tape for the collision-free hash, we need to additionally pass in a hashsize
predicate to determine the amount of error needed to avoid the previous presampled-values. The

hashf specification is defined in almost the same way as the lazyRandf specification, the view shift

in the precondition performs a case split to determine whether a key has been hashed before by

looking into the mutable map.

We also used this specification to derive an amortized version of the collision-free hash, which

we show in Figure 16. This hash specification has two main advantages. Firstly, clients do not need

to pass a hashsize predicate as a precondition for presampling into the tape. In addition, the error

credit 𝜀𝐴 (𝑁,𝑀) to be paid is constant as it is amortized across a fixed number of insertions𝑀 that

is decided in advance. To keep track of the maximum number of times the hash is used, clients need

to give up a single hashToken predicate; exactly𝑀 number of these hashTokens are generated when
the hash is initialized. The proof of this more complex specification is similar to that in Aguirre
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∀𝜀𝑂 𝑃 𝜄 E 𝜅 𝛾 ®𝑛 𝑠 ℎ.
((𝑠 + (𝑁 + 1 − 𝑠)𝜀𝑂 )/(𝑁 + 1) ≤ 𝜀) ∗
𝜄 ∈ E ∗
isHash ℎ 𝑃 𝜄 𝛾 ∗
hashTape 𝜅 ®𝑛 𝛾 ∗
hashsize 𝑠 𝛾 ∗
E (𝜀) ∗
|⇝⇝E ∃𝑛. E (𝜀𝑂 ) ∗ hashsize (𝑠 + 1) 𝛾 ∗
hashTape 𝜅 (®𝑛 · [𝑛]) 𝛾

ª®®®®®®®®®®®®®¬
(a) Presampling Specification

∀𝜄 𝛾 ℎ 𝑃 𝜅 𝑘 𝑄1 𝑄2 .

isHash ℎ 𝑃 𝜄 𝛾 ∗
(∀𝑚. 𝑃 𝑚 ∗ hashAuth𝑚 𝛾 ∗
|⇝⇝⊤match𝑚!!𝑘 with
| Some 𝑣 ⇒ 𝑃 𝑚 ∗ hashAuth 𝑛 𝛾 ∗ 𝑄1 𝑛

| None⇒ ∃𝑛 ®𝑛. hashTape 𝜅 (𝑛 · ®𝑛) 𝛾 ∗
(hashTape 𝜅 ®𝑛 𝛾 ∗
|⇛⊤𝑃 (𝑚[𝑘 := 𝑛]) ∗
hashAuth (𝑚[𝑘 := 𝑛]) 𝛾 ∗ 𝑄2 𝑛 ®𝑛)

end)


hashf ℎ 𝑘 𝜅 {𝑥 .𝑄1 𝑥 ∨ ∃®𝑛. 𝑄2 𝑥 ®𝑛}E

(b) hashf Specification

Fig. 15. Selection of Specification of the Collision-free Hash

et al. [3] which we omit here. We emphasize that this amortized specification can be derived from

the non-amortized specification (Figure 15) without taking into account how the concurrent hash

is implemented.

©­­­­­­­­­«

∀𝜀𝑂 𝑃 𝜄 E 𝜅 𝛾 ®𝑛 ℎ.
𝜄 ∈ E ∗
isHash ℎ 𝑃 𝜄 𝛾 ∗
hashTape 𝜅 ®𝑛 𝛾 ∗
hashToken 1 𝛾 ∗
E (𝜀𝐴 (𝑁,𝑀)) ∗
|⇝⇝E ∃𝑛. hashTape 𝜅 (®𝑛 · [𝑛]) 𝛾

ª®®®®®®®®®¬
Fig. 16. Amortized Presampling Specification

Just like the specification presented in §6.3, the specification for both the non-amortized and

amortized concurrent collision-free hashes uses the probabilistic update modality in the view shift

in its hashf specification to allow presampling to occur within the hashf body. As an example,

consider the following program (similar to lazyRace in §6.3) and its specification.

{E (𝜀𝐴 (𝑁,𝑀))}
letℎ = initHash () in
(hashf ℎ 0 (hashAllocTape ())) | | | (hashf ℎ 0 (hashAllocTape ()))

{𝑣 .∃𝑛. 𝑣 = (𝑛, 𝑛)}
Here we create an amortized hash and spawn two threads that each creates a tape and uses the

tape to hash the value 0. Because both threads are hashing the same key 0, it should be the case

that we only need to pay one constant 𝜀𝐴 (𝑁,𝑀) for the first hash operation. However we do not

know which thread is scheduled first in advance, so we cannot perform the presampling in advance

before the hashf call. The probabilistic update modality allows us to perform the presampling

within the hashf call in the case where the value of𝑚!!0 is None, indicating that this thread has

been scheduled first to do the randomized sampling.
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