Separation Logics for
Probability, Concurrency, and Security

Kwing Hei Li (Heili)
Aarhus University

Doctoral Symposium 2025

Joint work with Alejandro Aguirre, Philipp G. Haselwarter,

Simon Oddershede Gergersen, Markus de Medeiros, Joseph Tassarotti, Lars Birkedal

Example: Password Storage

setpw(m, u,p) = setmup
A 0
checkpw(m, u, p) = match getm u with We store passwords p of users u in a mutable map m.
Somep’ = p=p’
| None = false

end

Example: Password Storage

setpw(m, u,p) = setmup

checkpw (m, u, p) £ match getmu with We store passwords p of users u in a mutable map m.
Somep’ = p=p’ This is not secure!
| None = false
end

Example: Password Storage with hash

setpw(m, u, p) = setmu (h(p)) We now store the hash of the password instead.
checkpw(m, u, p) = match get m u with
Some(x) = x = h(p)
| None = false

end

Example: Password Storage with hash

setpw(m, u, p) = setmu (h(p)) We now store the hash of the password instead.
checkpw(m, u, p) = match get m u with
Some(x) = x = h(p) People who use same passwords will have
| None = false same hash stored!

end

Example: Password Storage with hash and salt

setpw(m, u, p) 2 letsalt = rand N in
We generate a salt (a random number from

setinu(salt, h(salt-p)) o,..., N) for each call of setpw

checkpw(m, u, p) £ match getm u with
Some(salt,x) = x = h(salt - p)
| None = false

end

Example: Password Storage with hash and salt

setpw(m, u, p) £ letsalt = rand N in
We generate a salt (a random number from

setinu(salt, h{saltp)) o,..., N) for each call of setpw

checkpw(m, u, p) £ match getm u with
Some(salt, x) = x = h(salt - p) We now store both salt and result after hashing

| None = false salt and password with hash function h

end

Example: Password Storage with salt

setpw(m, u, p) £ letsalt = rand N in
setmu (salt, h(salt - p)) Randomness occur in two places:
checkpw(m, u, p) £ match getm u with
Some(salt,x) = x = h(salt - p)
| None = false

end

Example: Password Storage with salt

setpw(m, u, p) 2 let salt = rand Nin
setmu (salt, h(salt - p)) Randomness occur in two places:
checkpw(m, u, p) £ match getm u with 1. Generation of salt
Some(salt,x) = x = h(salt - p)
| None = false

end

Example: Password Storage with salt

setpw(m, u, p) £ letsalt = rand N in
setmu (salt, h(salt - p)) Randomness occur in two places:
checkpw(m, u, p) £ match getm u with 1. Generation of salt
Some(salt,x) = x = h(salt-p) 2. Modelling hash function as random oracle
| None = false

end

Example: Password Storage with salt

Observation 1:
setpw(m, u, p) = letsalt = rand N in : .
A, U]2 randomness = more complicated properties
setmu (salt, h(salt - p))
checkpw(m, u, p) £ match getm u with
Some(salt,x) = x = h(salt - p)
| None = false

end

Example: Password Storage with salt

Observation 1:
setpw(m, u, p) = letsalt = rand N in ; ;
p U, p randomness = more complicated properties
setmu (salt, h(salt - p)) e checkpw with right password returns true

checkpw(m, u, p) £ match getm u with
Some(salt,x) = x = h(salt - p)
| None = false

end

Example: Password Storage with salt

Observation 1:
setpw(m, u, p) = letsalt = rand N in : .
p U, p randomness = more complicated properties
setmu (salt, h(salt - p)) e checkpw with right password returns true
checkpw(m, u, p) £ match getm u with e checkpw with wrong password returns false

Some(salt,x) = x = h(salt-p) Withhigh probability
| None = false

end

Example: Password Storage with salt

Observation 1:
setpw(m, u, p) = letsalt = rand N in : .
p U, p randomness = more complicated properties
setmu (salt, h(salt - p)) e checkpw with right password returns true
checkpw(m, u, p) £ match getm u with e checkpw with wrong password returns false

Some(salt,x) = x = h(salt-p) Withhigh probability

| None = false e password storage appears random to an
end outside observer

Example: Password Storage with salt

Observation 2:

setpw(m, u, p) 2 letsalt = rand Nin)
many complicated language features

setmu (salt, h(salt - p))
checkpw(m, u, p) £ match getm u with
Some(salt,x) = x = h(salt - p)
| None = false
end

Example: Password Storage with salt

Observation 2:

many complicated language features
e Dynamically allocated (potentially
checkpw(m, u, p) £ match get m u with higher-order) mutable state

Some(salt,x) = x = h(salt - p)

setpw(m, u, p) 2 letsalt = rand Nin

setmu (salt, h(salt - p))

| None = false
end

Example: Password Storage with salt

init : unit —
setpw : string — string — unit,
(checkpw : string — string — bool) Observation 2:
many complicated language features
e Dynamically allocated (potentially
init £ A_ letm = init () in higher-order) mutable state
(Aup. letsalt =rand N in

e Higherorder functions
setmu (salt, h(salt - p)),

Au p. match get m u with
Some(salt,x) = x = h(salt - p))
| None = false
end

Example: Password Storage with salt

init £ A_. let m = init () in

(Aup. letsalt = sample Nin Observation 2:
el (el leallio pl), many complicated language features
Au p. match get mu with e Dynamically allocated (potentially

Some(salt,x) = x = h(salt - p)) higher-order) mutable state
| None = false

end e Higherorder functions

samp|eN £ (recf_ - e Unbounded looping

letx = rand MAX in
ifx < Nthenxelsef()) ()

Example: Password Storage with salt

init £ A_. let m = init () in
(Aup. letsalt = sample N in
setmu (salt, h(salt - p)),

Au p. match get m u with
Some(salt,x) = x = h(salt - p))
| None = false
end
client £ let (setpw, checkpw) = init () in
(setpw(uy, p1) |l| setpw(us, p,));
checkpw(u,, p,)

Observation 2:

many complicated language features

e Dynamically allocated (potentially
higher-order) mutable state

e Higherorder functions
e Unbounded looping

e Concurrency in client

Example: Password Storage with salt

init £ A_. letm = init () in
(Aup. let salt = read /dev/random in
setmu (salt, h(salt - p)),

Au p. match get mu with
Some(salt,x) = x = h(salt - p))
| None = false
end

generator = repeatedly writes random bits into /dev/random

Observation 2:

many complicated language features

e Dynamically allocated (potentially
higher-order) mutable state

e Higherorder functions
e Unbounded looping

e Concurrency in client & implementation...

Reasoning about probabilistic properties

Verifying real-world security programs =N +
Using complicated language features

Proving complicated probabilistic properties

Various prior work on verifying probabilistic programs:

Proving complicated probabilistic properties

Various prior work on verifying probabilistic programs:

e Weakest pre-expectation calculi (expectations, error bounds, relational reasoning, etc.)

Proving complicated probabilistic properties

Various prior work on verifying probabilistic programs:
e Weakest pre-expectation calculi (expectations, error bounds, relational reasoning, etc.)

e Coupling-based logics, pRHL, apRHL, ...(equivalences of programs, sensitivity, differential
privacy)

Proving complicated probabilistic properties

Various prior work on verifying probabilistic programs:

e Weakest pre-expectation calculi (expectations, error bounds, relational reasoning, etc.)

e Coupling-based logics, pRHL, apRHL, ...(equivalences of programs, sensitivity, differential
privacy)

e Probabilistic separation logic, Lilac, Bluebell, ...(independence, conditioning, relational
reasoning, etc.)

Proving complicated probabilistic properties

Various prior work on verifying probabilistic programs:

e Weakest pre-expectation calculi (expectations, error bounds, relational reasoning, etc.)

e Coupling-based logics, pRHL, apRHL, ...(equivalences of programs, sensitivity, differential
privacy)

e Probabilistic separation logic, Lilac, Bluebell, ...(independence, conditioning, relational
reasoning, etc.)

e Outcome logic (independence, conditioning)

Proving complicated probabilistic properties

Various prior work on verifying probabilistic programs:

e Weakest pre-expectation calculi (expectations, error bounds, relational reasoning, etc.)

e Coupling-based logics, pRHL, apRHL, ...(equivalences of programs, sensitivity, differential
privacy)

e Probabilistic separation logic, Lilac, Bluebell, ...(independence, conditioning, relational
reasoning, etc.)

e Outcome logic (independence, conditioning)

e Denotational semantics (contextual refinement)

Proving complicated probabilistic properties

Various prior work on verifying probabilistic programs:

e Weakest pre-expectation calculi (expectations, error bounds, relational reasoning, etc.)

e Coupling-based logics, pRHL, apRHL, ...(equivalences of programs, sensitivity, differential
privacy)

e Probabilistic separation logic, Lilac, Bluebell, ...(independence, conditioning, relational
reasoning, etc.)

e Outcome logic (independence, conditioning)
e Denotational semantics (contextual refinement)

e Model checking (safety, liveness)

Proving complicated probabilistic properties

Various prior work on verifying probabilistic programs:
e Weakest pre-expectation calculi (expectations, error bounds, relational reasoning, etc.)

e Coupling-based logics, pRHL, apRHL, ...(equivalences of programs, sensitivity, differential
privacy)

e Probabilistic separation logic, Lilac, Bluebell, ...(independence, conditioning, relational
reasoning, etc.)

e Outcome logic (independence, conditioning)
e Denotational semantics (contextual refinement)
e Model checking (safety, liveness)

e Fancy type systems (differential privacy, cost analysis)

Proving complicated probabilistic properties

Various prior work on verifying probabilistic programs:

e Weakest pre-expectation calculi (expectations, error bounds, relational reasoning, etc.)

e Coupling-based logics, pRHL, apRHL, ...(equivalences of programs, sensitivity, differential
privacy)

e Probabilistic separation logic, Lilac, Bluebell, ...(independence, conditioning, relational
reasoning, etc.)

e Outcome logic (independence, conditioning)

e Denotational semantics (contextual refinement)

e Model checking (safety, liveness)

e Fancy type systems (differential privacy, cost analysis)

e Refinement based approaches...

Proving complicated probabilistic properties

Various prior work on verifying probabilistic programs:
e Weakest pre-expectation calculi (expectations, error bounds, relational reasoning, etc.)

e Coupling-based logics, pRHL, apRHL, ...(equivalences of programs, sensitivity, differential
privacy)

e Probabilistic separation logic, Lilac, Bluebell, ...(independence, conditioning, relational
reasoning, etc.)

e Outcome logic (independence, conditioning)

e Denotational semantics (contextual refinement)

e Model checking (safety, liveness)

e Fancy type systems (differential privacy, cost analysis)

e Refinement based approaches...

Though they have various limitations, e.g. no shared state, higher-order functions, 8

Iris is a higher-order concurrent separation logic framework, formalized in Rocg

Iris

Iris is a higher-order concurrent separation logic framework, formalized in Rocg

Used to verify programs with many challenging features, e.g. higher-order functions,
unstructured concurrency

Iris

Iris is a higher-order concurrent separation logic framework, formalized in Rocg

Used to verify programs with many challenging features, e.g. higher-order functions,
unstructured concurrency

However, less work on using Iris to prove probabilistic properties...

Logics developed

PhD goal: Develop probabilistic extensions of Iris for highly expressive languages

Logics developed

PhD goal: Develop probabilistic extensions of Iris for highly expressive languages

Unary | Relational
Sequential | Eris Approxis
Concurrent | Coneris | Foxtrot

Logics developed

PhD goal: Develop probabilistic extensions of Iris for highly expressive languages

Unary | Relational
Sequential | Eris Approxis
Concurrent | Coneris | Foxtrot

Stage 1: develop Iris logics for sequential probabilistic programs

Logics developed

PhD goal: Develop probabilistic extensions of Iris for highly expressive languages

Unary | Relational
Sequential | Eris Approxis
Concurrent | Coneris | Foxtrot

Stage 1: develop Iris logics for sequential probabilistic programs

Stage 2: extend those logics to concurrent programs

Idealized collision-free hash

letx =hnin
lety = hmin
(x,y)

Idealized collision-free hash

letx =hnin
m#n lety = hmin (xy). x#£y
(%)

Useful to model the hash function as a collision-free random oracle

Idealized collision-free hash

letx =hnin
m#n lety = hmin (xy). x#£y
(%)

Useful to model the hash function as a collision-free random oracle

Hash is collision-free if different inputs map to different outputs

Idealized collision-free hash

letx =hnin
m#n lety = hmin (xy). x#£y
(%)

Useful to model the hash function as a collision-free random oracle
Hash is collision-free if different inputs map to different outputs

But this is not always true! Small probability of error!

Eris @ ICFP 2024

e Erisis a unary logic for proving error bounds of probabilistic programs

12

Eris @ ICFP 2024

e Erisis a unary logic for proving error bounds of probabilistic programs

o KEY IDEA: We internalize error as a separation logic resource, aka error credit

12

Eris @ ICFP 2024

e Erisis a unary logic for proving error bounds of probabilistic programs
o KEY IDEA: We internalize error as a separation logic resource, aka error credit

e /(&) asserts ownership of € error credits, with € € [0, 1]

12

Eris @ ICFP 2024

e Erisis a unary logic for proving error bounds of probabilistic programs

KEY IDEA: We internalize error as a separation logic resource, aka error credit

Z () asserts ownership of € error credits, with € € [0, 1]

Adequacy: {7 (¢)} e{v.p(v)} = Presece[~d] < &

12

Eris @ ICFP 2024

e Erisis a unary logic for proving error bounds of probabilistic programs

KEY IDEA: We internalize error as a separation logic resource, aka error credit

Z () asserts ownership of € error credits, with € € [0, 1]

Adequacy: {7 (¢)} e{v.p(v)} = Presece[~d] < &

Flexible rules to “spend” error credits to avoid undesirable error results:

HT-RAND-LIST

F{¢ (length(xs)/(N +1))} rand N{n . n & xs}

12

Eris example: Hash

collFree(h) x*
n ¢ domh %

|dom h|
()

hn

Idealized collision-free hash function

{v. collFree(h)}

13

Eris example: Hash

collFreeAm(h) x

Idealized collision-free hash function n ¢ domh x
) |h| < M x*
Amortized idealized collision-free hash # (Econst)
function
hn

{v. collFreeAm(h)}

13

Eris example: Hash

collFreeAm(h)

Idealized collision-free hash function n & domh %
() |h| < M %
Amortized idealized collision-free hash # (Econst)
function
hn

{v. collFreeAm(h)}

Amortized hash specification used in verifying Merkle tree and unreliable data storage system

13

Approxis @ POPL 2025

let] =ref[]in
a A_letx=unif({o,..., N}\ D) in
o [x- Z;
x

prf £ A_. rand N prp

14

Approxis @ POPL 2025

let] =ref[]in
a A_letx=unif({o,..., N}\ D) in
o [x- Z;
x

prf £ A_. rand N prp

Approxis re-introduce error credits to the relational setting for proving approximate refinements

14

Approxis @ POPL 2025

let] =ref[]in
a A_letx=unif({o,..., N}\ D) in
o [x- Z;
x

prf £ A_. rand N prp

Approxis re-introduce error credits to the relational setting for proving approximate refinements

Used in security-related examples: PRP/PRF switching lemma and IND$-CPA security of an
encryption scheme

14

Approxis @ POPL 2025

let] =ref[]in

A letx = unif({o, ..., N}\ D) in
a £
prf = A_. rand N prp Do gl

x

Approxis re-introduce error credits to the relational setting for proving approximate refinements

Used in security-related examples: PRP/PRF switching lemma and IND$-CPA security of an
encryption scheme

Built a logical refinement relation for contextual refinement, used to prove correctness of a B+
tree sampling scheme

14
s

Logics for Concurrency and Probability

Eris and Approxis are logics for sequential probabilistic programs

15

Logics for Concurrency and Probability

Eris and Approxis are logics for sequential probabilistic programs

We now extend them for concurrent probabilistic programs

15

Logics for Concurrency and Probability

Eris and Approxis are logics for sequential probabilistic programs
We now extend them for concurrent probabilistic programs

e Eris = Coneris @ ICFP 2025

e Approxis = Foxtrot (WIP)

15

Challenges in extending to Concurrency

These extensions to concurrency are non-trivial:

16

Challenges in extending to Concurrency

These extensions to concurrency are non-trivial:

1. In Coneris, we need to capture randomized logical atomicity to support modular
specifications (More on this at my ICFP talk on Wednesday!)

16

Challenges in extending to Concurrency

These extensions to concurrency are non-trivial:

1. In Coneris, we need to capture randomized logical atomicity to support modular
specifications (More on this at my ICFP talk on Wednesday!)

2. Some rules in Approxis are unsound in Foxtrot

16

Challenges in extending to Concurrency

These extensions to concurrency are non-trivial:

1. In Coneris, we need to capture randomized logical atomicity to support modular
specifications (More on this at my ICFP talk on Wednesday!)

2. Some rulesin Approxis are unsound in Foxtrot

We need to redesign the model of the logics and introduce new logical facilities and proof
techniques

16

Examples of Coneris and Foxtrot

e Modular specifications of thread-safe hashes

17

Examples of Coneris and Foxtrot

e Modular specifications of thread-safe hashes

e Strict error bounds of concurrent Bloom filter

17

Examples of Coneris and Foxtrot

e Modular specifications of thread-safe hashes
e Strict error bounds of concurrent Bloom filter

e Sodium sampling function:

AN.if N < 2.theno
else let min = MAX mod N in
letr = ref oin

recf _ =r <+ rand(MAX — 1);
if '7 < min then f() ()
else (!rmod N)

ety AN.if N =othenoelse rand(N —1)

17

Revisiting Password Storage

e checkpw with wrong password returns false

« . A e .
i3S e CEB S EI0 with high probability = Eris

Aup. letsalt = sample N in
(setmu (salt, h(salt - p)),
Au p. match get mu with
Some(salt,x) = x = h(salt - p)
| None = false)
end

18

Revisiting Password Storage

init 2 A_ letm = init () in e checkpw with wrong password returns false
- o with high probability = Eris
(Aup. letsalt = sample N in

setmu (salt, h(salt - p)), e password storage appears random to an

outside observer = Approxis
Au p. match get mu with

Some(salt,x) = x = h(salt - p))
| None = false
end

18

Revisiting Password Storage

A .. .
init = A_.letm = init () in
e checkpw with wrong password returns false

(Aup. letsalt = sample Nin with high probability = Eris

setmu (salt, h(salt - p)),
e password storage appears random to an

Aup. match get mu with
4 . outside observer = Approxis

Some(salt,x) = x = h(salt - p))
| None = false e concurrency in the clientside =
end Coneris or Foxtrot

client £ let (setpw, checkpw) = init () in

(setpw(ul, 1) |l setpw(u,, pz));
checkpw(u,, p,)

18

Revisiting Password Storage

init 2 A_ letm = init () in ° checkpw with w.r(.)ng pass.word returns false
with high probability = Eris
(Aup. let salt = read /dev/random in

setmu (salt, h(salt - p)), e password storage appears random to an

) outside observer = Approxis
Au p. match get m u with

Some(salt,x) = x = h(salt - p)
| None = false
end e concurrency in implementation side =

e concurrency inthe clientside =
Coneris or Foxtrot

generator 2 repeatedly writes random bits into /dev/frandom Workiin progress!

18

Revisiting Password Storage

init £ A_. let m = init () in

(Aup. let salt = read /dev/random in

setmu (salt, h(salt - p)), ¢

Au p. match get m u with
Some(salt,x) = x = h(salt - p))
| None = false
end a

generator £ repeatedly writes random bits into /dev/random

checkpw with wrong password returns false
with high probability = Eris

password storage appears random to an
outside observer = Approxis

concurrency in the client side =
Coneris or Foxtrot

concurrency in implementation side =
work in progress!

Why? The schedulers are too powerful. (Well-known issue in various security models)

18

Revisiting Password Storage

init 2 A_ letm = init () in ° checkpw with w.r(.)ng pass.word returns false
with high probability = Eris
(Aup. let salt = read /dev/random in

setmu (salt, h(salt - p)), e password storage appears random to an

) outside observer = Approxis
Au p. match get m u with

Some(salt,x) = x = h(salt - p))
| None = false
end e concurrency in implementation side =

e concurrency inthe clientside =
Coneris or Foxtrot

generator 2 repeatedly writes random bits into /devfrandom Workiin progress!
Why? The schedulers are too powerful. (Well-known issue in various security models)

Can we develop logics for reasoning about more restricted schedulers?

18

Conclusion

Two challenges in verifying real-world security programs:
1. Complicated probabilistic properties

2. Programs use complicated language features

19

Conclusion

Two challenges in verifying real-world security programs:

1. Complicated probabilistic properties

2. Programs use complicated language features

Much success with implementing logics within Iris:

Unary | Relational
Sequential | Eris Approxis
Concurrent | Coneris | Foxtrot

19

Conclusion

Two challenges in verifying real-world security programs:
1. Complicated probabilistic properties

2. Programs use complicated language features

Much success with implementing logics within Iris:

Unary | Relational
Sequential | Eris Approxis
Concurrent | Coneris | Foxtrot

Future work:
1. Improving concurrency model of Coneris and Foxtrot

2. Applyingit to verify actual implementations of cryptographic libraries and protocols

19

APPENDIX

20

Timeline

—

Start 1: Iris for probability End

21

Timeline

—

1: Iris for probabilit 2: Extending to concurrenc
Start rstorp y g 4 End

21

Timeline

1: Iris for probability 2: Extending to concurrency

Start

Eris Tachis Coneris
Internalizing obliviousness(WIP)

Approxis Foxtrot(WIP)

21

22

1. £(e) x4 (e,) - £ (e + &)

22

1. £(e) x4 (e,) - £ (e + &)
2. f(0F L

22

Eris rules

1. £(e1) x£(ey) - F(er+¢,)
2. f(0F L
v JF0)

2Li=o N+1
3. F{# (&)} randN{n. ¢ (F(n))}

<€

HT-RAND-EXP

22

Eris rules

1. £ (&) * £(ex) A £ (&1 + &) 0; £(F(0))
2 f(l) oL rand1; £ (€)
' ?(-) 1 j(ff(l))
i
t1 HT-RAND-EXP F(o) + (1)

3. F{¢(e)} randN{n.Z4(F(n))} f§8

22

Logical Relations in Approxis

We build a logical refinement relation in Approxis for proving contextual refinement

23

Logical Relations in Approxis

We build a logical refinement relation in Approxis for proving contextual refinement

You can assume ownership of some non-zero amount of error credits with the logical

refinement relation!
Ve>o0.f(e) *«AFeZe T

ArFeZe:t

23

Logical Relations in Approxis

We build a logical refinement relation in Approxis for proving contextual refinement

You can assume ownership of some non-zero amount of error credits with the logical

refinement relation!
Ve>o0.f(e) *«AFeZe T

ArFeZe:t

recf =
letx = rand Nin ~x A _.rand M
ifx < Mthen xelse f()

23

Logical Relations in Approxis

We build a logical refinement relation in Approxis for proving contextual refinement

You can assume ownership of some non-zero amount of error credits with the logical

refinement relation!
Ve>o0.f(e) *«AFeZe T

ArFeZe:t

recf =
letx = rand Nin ~x A _.rand M
ifx < Mthen xelse f()

Used in proving correctness of a rejection sampling scheme from B+ tree (developed by Olken
and Rotem 1989s)

23

Coneris @ ICFP 2025

e Canwe use error credits to reason about error bounds of concurrent probabilistic programs?

24

Coneris @ ICFP 2025

e Canwe use error credits to reason about error bounds of concurrent probabilistic programs?

e Yes! With Coneris!

24

Coneris @ ICFP 2025

e Canwe use error credits to reason about error bounds of concurrent probabilistic programs?
e Yes! With Coneris!
o {/(&)te{v.d(v)} = forall possibleschedulerss, Preyecs.[—d] < €

24

Coneris @ ICFP 2025

e Canwe use error credits to reason about error bounds of concurrent probabilistic programs?
e Yes! With Coneris!
o {/(&)te{v.d(v)} = forall possibleschedulerss, Preyecs.[—d] < €

e Inherits all the error credit rules of Eris

24

Coneris @ ICFP 2025

e Canwe use error credits to reason about error bounds of concurrent probabilistic programs?

e Yes! With Coneris!
o {/(&)te{v.d(v)} = forall possibleschedulerss, Preyecs.[—d] < €
e Inherits all the error credit rules of Eris
e Errorcredits can be placed in invariants!
{£(1/16)}
let] =refoin
(faal(rand3) ||| faal(rand3));
'
{vv > o}

24

Coneris—Modularity

e Writing modular specifications for concurrent modules is known to be challenging

25

Coneris—Modularity

e Writing modular specifications for concurrent modules is known to be challenging

e Traditional Iris logics use > to capture logical atomicity (linearization point).

25

Coneris—Modularity

e Writing modular specifications for concurrent modules is known to be challenging

e Traditional Iris logics use 2 to capture logical atomicity (linearization point). But this is not
enough if we also have probability!

25

Coneris—Modularity

e Writing modular specifications for concurrent modules is known to be challenging

e Traditional Iris logics use 2 to capture logical atomicity (linearization point). But this is not
enough if we also have probability!

e We introduce the probabilistic update modality 2 to capture randomized logical atomicity

25

Coneris—Modularity

e Writing modular specifications for concurrent modules is known to be challenging

e Traditional Iris logics use 2 to capture logical atomicity (linearization point). But this is not
enough if we also have probability!

e We introduce the probabilistic update modality 2 to capture randomized logical atomicity

e Used to prove specification of a thread safe hash module and concurrent bloom filter (novel
result)

25

Foxtrot (WIP)

e Can we also extend Approxis to reason about approximate equivalence of concurrent
probabilistic programs?

26

Foxtrot (WIP)

e Can we also extend Approxis to reason about approximate equivalence of concurrent
probabilistic programs?

e Yes! With Foxtrot!

26

Foxtrot (WIP)

e Can we also extend Approxis to reason about approximate equivalence of concurrent
probabilistic programs?

e Yes! With Foxtrot!

o (/(e) o elevIV. o= v} = exec”¥(e,0) < exec(e/,0) + ¢

26

Foxtrot (WIP)

e Can we also extend Approxis to reason about approximate equivalence of concurrent
probabilistic programs?

e Yes! With Foxtrot!
o (/(e) xoelevIV . o= v} = exec¥(e, 0) < execV(e/,0) + ¢

e Does notinheritall the rules of Approxis!
THIS-IS-UNSOUND
Kk — (N, #)
k' <>¢ (N, m) Y.k < (N, BHv) x k" <5 (N, 7 +Hv) = rwp ¢; 3 e, {D}
rwp e; 3 e {®}

UNSOUND-HT-COUPLE-RAND-LBL-EXACT

Vi < N.Ak <= (N, 7 [n])} n{D}
{k = (N, %)} rand N{D}

26

Foxtrot (WIP)

e Can we also extend Approxis to reason about approximate equivalence of concurrent
probabilistic programs?

e Yes! With Foxtrot!
o (/(e) o elevIV. o= v} = exec”¥(e,0) < exec(e/,0) + ¢

e Does notinheritall the rules of Approxis!

THIS-IS-UNSOUND
Kk — (N, #)
k' <>¢ (N, m) Y.k < (N, BHv) x k" <5 (N, 7 +Hv) = rwp ¢; 3 e, {D}

rwp é; 5 e, {D}

UNSOUND-HT-COUPLE-RAND-LBL-EXACT

Vi < N.Ak <= (N, 7 [n])} n{D}
{k = (N, %)} rand N{D}

Foxtrot examples

Algebraic theory:
(e1 Dp €2) By €3 erx 1 Dpg (€2 69?%52 e;)

€, 0r (e, 0re;) ~cy (6;0re,)ore;

e, or (diverge () ~cw &

27

Foxtrot examples

Algebraic theory:
(&1 ®p €2) Bg €3 crx €1 Dpq (€2 @ZI%’Z &)

€, 0r (e, 0re;) ~cy (6;0re,)ore;

e, or (diverge () ~cw &
Libsodium random sampling implementation:

AN.if N < 2.theno
else let min = MAX mod N in
letr = ref oin

recf _ =r < rand(MAX —1);
if 1 < min thenf() ()
else ('rmod N)

~etx AN.if N =othenoelse rand(N —1)

27

Oblivious scheduler example

letx =rand1in

choose(x = 0,x = 1)

28

Oblivious scheduler example

letx =rand1in

choose(x = 0,x = 1)

28

