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Example: Password Storage

setpw(m, u, p) ≜ setmu p

checkpw(m, u, p) ≜ match getmuwith
Some p ′ ⇒ p = p ′

| None⇒ false
end

We store passwords p of users u in a mutable mapm.

This is not secure!

1



Example: Password Storage

setpw(m, u, p) ≜ setmu p

checkpw(m, u, p) ≜ match getmuwith
Some p ′ ⇒ p = p ′

| None⇒ false
end

We store passwords p of users u in a mutable mapm.
This is not secure!

1



Example: Password Storage with hash

setpw(m, u, p) ≜ setmu (h(p))

checkpw(m, u, p) ≜ match getmuwith
Some(x)⇒ x = h(p)
| None⇒ false

end

We now store the hash of the password instead.

People who use same passwords will have
same hash stored!
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Example: Password Storage with hash and salt

setpw(m, u, p) ≜ let salt = randN in
setmu (salt, h(salt · p))

checkpw(m, u, p) ≜ match getmuwith
Some(salt, x)⇒ x = h(salt · p)
| None⇒ false

end

We generate a salt (a random number from
0, . . . ,N) for each call of setpw

We now store both salt and result after hashing
salt and password with hash function h
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Example: Password Storage with salt

setpw(m, u, p) ≜ let salt = randN in
setmu (salt, h(salt · p))

checkpw(m, u, p) ≜ match getmuwith
Some(salt, x)⇒ x = h(salt · p)
| None⇒ false

end

Randomness occur in two places:

1. Generation of salt

2. Modelling hash function as random oracle
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Example: Password Storage with salt

setpw(m, u, p) ≜ let salt = randN in
setmu (salt, h(salt · p))

checkpw(m, u, p) ≜ match getmuwith
Some(salt, x)⇒ x = h(salt · p)
| None⇒ false

end

Observation 1:
randomness⇒more complicated properties

• checkpw with right password returns true

• checkpw with wrong password returns false
with high probability

• password storage appears random to an
outside observer
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Observation 2:
many complicated language features

• Dynamically allocated (potentially
higher-order) mutable state

• Higher order functions

• Unbounded looping

• Concurrency in client & implementation...
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Example: Password Storage with salt

init :: unit→( setpw : string→ string→ unit,
checkpw : string→ string→ bool

)

init ≜ λ_. letm = init () in( λu p. let salt = randN in
setmu (salt, h(salt · p)),

λu p. match getmuwith
Some(salt, x)⇒ x = h(salt · p)
| None⇒ false

end

)

Observation 2:
many complicated language features
• Dynamically allocated (potentially

higher-order) mutable state

• Higher order functions

• Unbounded looping

• Concurrency in client & implementation...
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Example: Password Storage with salt

init ≜ λ_. letm = init () in( λu p. let salt = sampleN in
setmu (salt, h(salt · p)),

λu p. match getmuwith
Some(salt, x)⇒ x = h(salt · p)
| None⇒ false

end

)
sampleN ≜ (rec f _ =

let x = rand MAX in
if x ⩽ N then x else f () ) ()

Observation 2:
many complicated language features
• Dynamically allocated (potentially

higher-order) mutable state

• Higher order functions

• Unbounded looping

• Concurrency in client & implementation...
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Example: Password Storage with salt

init ≜ λ_. letm = init () in( λu p. let salt = sampleN in
setmu (salt, h(salt · p)),

λu p. match getmuwith
Some(salt, x)⇒ x = h(salt · p)
| None⇒ false

end

)
client ≜ let (setpw, checkpw) = init () in(

setpw(u1, p1) ||| setpw(u2, p2)
)

;
checkpw(u1, p2)

Observation 2:
many complicated language features
• Dynamically allocated (potentially

higher-order) mutable state

• Higher order functions

• Unbounded looping

• Concurrency in client

& implementation...
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Example: Password Storage with salt

init ≜ λ_. letm = init () in( λu p. let salt = read /dev/random in
setmu (salt, h(salt · p)),

λu p. match getmuwith
Some(salt, x)⇒ x = h(salt · p)
| None⇒ false

end

)
generator ≜ repeatedly writes random bits into /dev/random

Observation 2:
many complicated language features
• Dynamically allocated (potentially

higher-order) mutable state

• Higher order functions

• Unbounded looping

• Concurrency in client & implementation...
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Verifying real-world security programs ⇒
Reasoning about probabilistic properties

+
Using complicated language features
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Proving complicated probabilistic properties

Various prior work on verifying probabilistic programs:

• Weakest pre-expectation calculi (expectations, error bounds, relational reasoning, etc.)

• Coupling-based logics, pRHL, apRHL, …(equivalences of programs, sensitivity, differential
privacy)

• Probabilistic separation logic, Lilac, Bluebell, …(independence, conditioning, relational
reasoning, etc.)

• Outcome logic (independence, conditioning)

• Denotational semantics (contextual refinement)

• Model checking (safety, liveness)

• Fancy type systems (differential privacy, cost analysis)

• Refinement based approaches...

Though they have various limitations, e.g. no shared state, higher-order functions,
concurrency
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Iris

Iris is a higher-order concurrent separation logic framework, formalized in Rocq

Used to verify programs with many challenging features, e.g. higher-order functions,
unstructured concurrency

However, less work on using Iris to prove probabilistic properties...
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Logics developed

PhD goal: Develop probabilistic extensions of Iris for highly expressive languages

Unary Relational
Sequential Eris Approxis
Concurrent Coneris Foxtrot

Stage 1: develop Iris logics for sequential probabilistic programs

Stage 2: extend those logics to concurrent programs
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Idealized collision-free hash

 m ̸= n



let x = h n in
let y = hm in
(x, y)

 (x, y). x ̸= y


Useful to model the hash function as a collision-free random oracle

Hash is collision-free if different inputs map to different outputs

But this is not always true! Small probability of error!
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Eris @ ICFP 2024

• Eris is a unary logic for proving error bounds of probabilistic programs

• KEY IDEA: We internalize error as a separation logic resource, aka error credit

• E(ε) asserts ownership of ε error credits, with ε ∈ [0, 1]

• Adequacy: {E(ε)} e {v.ϕ(v)} ⇒ Prexec e[¬ϕ] ⩽ ε

• Flexible rules to “spend” error credits to avoid undesirable error results:

HT-RAND-LIST

⊢ {E(length(xs)/(N+ 1))} randN {n . n ̸∈ xs}
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Eris example: Hash

Idealized collision-free hash function

⇓
Amortized idealized collision-free hash

function


collFree(h) ∗
n /∈ dom h ∗

E
(
|dom h|
2S

)


h n

{v. collFree(h)}
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⇓

Amortized idealized collision-free hash
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Eris example: Hash

Idealized collision-free hash function
⇓

Amortized idealized collision-free hash
function


collFreeAm(h) ∗
n /∈ dom h ∗
|h| < M ∗
E(Econst)


h n

{v. collFreeAm(h)}

Amortized hash specification used in verifying Merkle tree and unreliable data storage system
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Approxis @ POPL 2025

prf ≜ λ_. randN prp ≜

let l = ref [ ] in
λ_. let x = unif ({0, . . . ,N} \ l) in
l← x · l;
x

Approxis re-introduce error credits to the relational setting for proving approximate refinements

Used in security-related examples: PRP/PRF switching lemma and IND$-CPA security of an
encryption scheme

Built a logical refinement relation for contextual refinement, used to prove correctness of a B+
tree sampling scheme
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Logics for Concurrency and Probability

Eris and Approxis are logics for sequential probabilistic programs

We now extend them for concurrent probabilistic programs

• Eris⇒ Coneris @ ICFP 2025

• Approxis⇒ Foxtrot (WIP)
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Challenges in extending to Concurrency

These extensions to concurrency are non-trivial:

1. In Coneris, we need to capture randomized logical atomicity to support modular
specifications (More on this at my ICFP talk on Wednesday!)

2. Some rules in Approxis are unsound in Foxtrot

We need to redesign the model of the logics and introduce new logical facilities and proof
techniques
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Examples of Coneris and Foxtrot

• Modular specifications of thread-safe hashes

• Strict error bounds of concurrent Bloom filter

• Sodium sampling function:

λN. ifN < 2 then 0
else let min = MAX modN in
let r = ref 0 in rec f _ = r← rand(MAX − 1);

if ! r < min then f ()
else (! rmodN)

 ()

≃ctx λN. ifN = 0 then 0 else rand(N− 1)
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Revisiting Password Storage

init ≜ λ_. letm = init () in( λu p. let salt = sampleN in
setmu (salt, h(salt · p)),

λu p. match getmuwith
Some(salt, x)⇒ x = h(salt · p)
| None⇒ false

end

)

• checkpw with wrong password returns false
with high probability⇒ Eris

• password storage appears random to an
outside observer⇒Approxis

• concurrency in the client side⇒
Coneris or Foxtrot

• concurrency in implementation side⇒
work in progress!

Why? The schedulers are too powerful. (Well-known issue in various security models)

Can we develop logics for reasoning about more restricted schedulers?
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Conclusion

Two challenges in verifying real-world security programs:

1. Complicated probabilistic properties

2. Programs use complicated language features

Much success with implementing logics within Iris:

Unary Relational
Sequential Eris Approxis
Concurrent Coneris Foxtrot

Future work:

1. Improving concurrency model of Coneris and Foxtrot

2. Applying it to verify actual implementations of cryptographic libraries and protocols
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Timeline

Start End
1: Iris for probability

2: Extending to concurrency
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Eris rules

1. E(ε1) ∗ E(ε2) ⊣⊢ E(ε1 + ε2)

2. E(1) ⊢ ⊥

3.

∑N
i=0

F(i)
N+ 1

⩽ ε

⊢ {E(ε)} randN {n . E(F(n))}
HT-RAND-EXP

rand 1 ; E(ε)

1 ; E(F(1))

0 ; E(F(0))

F(0) + F(1)
2

⩽ ε
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Logical Relations in Approxis

We build a logical refinement relation in Approxis for proving contextual refinement

You can assume ownership of some non-zero amount of error credits with the logical
refinement relation!

∀ε > 0. E(ε) ∗ ∆ ⊨ e ≾ e ′ : τ
∆ ⊨ e ≾ e ′ : τ

rec f _ =

let x = randN in
if x ⩽ M then x else f ()

≃ctx λ _. randM

Used in proving correctness of a rejection sampling scheme from B+ tree (developed by Olken
and Rotem 1989s)
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Coneris @ ICFP 2025

• Can we use error credits to reason about error bounds of concurrent probabilistic programs?

• Yes! With Coneris!

• {E(ε)} e {v.ϕ(v)} ⇒ for all possible schedulers s, Prexec s,e[¬ϕ] ⩽ ε

• Inherits all the error credit rules of Eris

• Error credits can be placed in invariants!

{E(1/16)}

let l = ref 0 in
(faa l (rand 3) ||| faa l (rand 3)) ;
! l

{v.v > 0}
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Coneris – Modularity

• Writing modular specifications for concurrent modules is known to be challenging

• Traditional Iris logics use |⇛ to capture logical atomicity (linearization point). But this is not
enough if we also have probability!

• We introduce the probabilistic update modality |⇝⇝ to capture randomized logical atomicity

• Used to prove specification of a thread safe hash module and concurrent bloom filter (novel
result)
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Foxtrot (WIP)

• Can we also extend Approxis to reason about approximate equivalence of concurrent
probabilistic programs?

• Yes! With Foxtrot!

• {E(ε) ∗ 0 Z⇒ e ′} e {v.∃v ′. 0 Z⇒ v ′} =⇒ exec⊔⇓(e, σ) ⩽ exec⊔⇓(e ′, σ) + ε

• Does not inherit all the rules of Approxis!
THIS-IS-UNSOUND

κ ↪→ (N,~n)
κ ′ ↪→s (N, ~m) ∀v. κ ↪→ (N,~n++ v) ∗ κ ′ ↪→s (N, ~m++ v) ∗ rwp e1 ≾ e2 {Φ}

rwp e1 ≾ e2 {Φ}

UNSOUND-HT-COUPLE-RAND-LBL-EXACT
∀n ⩽ N. {κ ↪→s (N,~n · [n])} n {Φ}

{κ ↪→s (N,~n)} randN {Φ}

Challenge: Model of Foxtrot is very different from that of Approxis.
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Foxtrot examples

Algebraic theory:

(e1 ⊕p e2)⊕q e3 ≃ctx e1 ⊕pq (e2 ⊕ q−pq
1−pq

e3)

e1 or (e2 or e3) ≃ctx (e1 or e2) or e3
e1 or (diverge ()) ≃ctx e1

Libsodium random sampling implementation:

λN. ifN < 2 then 0
else let min = MAX modN in
let r = ref 0 in rec f _ = r← rand(MAX − 1);

if ! r < min then f ()
else (! rmodN)

 ()

≃ctx λN. ifN = 0 then 0 else rand(N− 1)
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Oblivious scheduler example

let x = rand 1 in
choose(x = 0, x = 1)
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