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Question(1)

Figure: ICMA photos: Creative Commons Attribution-Share Alike 2.0 Generic license

Encoding a fair coin toss

vs
Encoding a lot of fair coin tosses
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Question(2)

Figure: ICMA photos: Creative Commons Attribution-Share Alike 2.0 Generic license

Encoding a biased coin toss (99% heads, 1% tails)

vs
Encoding a lot of biased coin tosses
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Question(3)

Figure: Iain.dalton: Creative Commons Attribution-ShareAlike 3.0 License

Encoding an English letter (Note 26 < 32 = 25)

vs
Encoding a novel
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Surprisal

Definition of Surprisal

Given event x with probability P(x), surprisal of x , I (x) = − logP(x)

Measures information content of an event

Consider
1 “Hei Li ate a chocolate cake during his Compsci Talk”
2 “Hei Li did not eat a chocolate cake during his Compsci Talk”
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Shannon’s Entropy

Definition of Entropy
Given discrete r.v. X , with possible outcomes x1,...,xn which occur
with probability P(x1),...,P(xn), entropy of X ,H(X ) =
−
∑n

i=1 P(xi) logP(xi)

Entropy is expected value of surprisal over all outcomes.

Informally, entropy =

amount of uncertainty of r.v. has before it is resolved
amount of information r.v. provides after it is resolved
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Example of Shannon’s Entropy

Suppose P(X = i) = 1
6

for i = 1,...,6 (fair die)

H(X ) = −
∑6

i=1
1
6

log 1
6

≈ 2.58496 bits

Suppose P(Y = i) =

{
1

25
for i = 1, ..., 5

4
5

for i = 6
(biased die)

H(Y ) = −(
∑5

i=1
1

25
log 1

25
+ 4

5
log 4

5
)

≈ 1.1863137 bits

High uncertainty = high information content = high entropy
“Information is the resolution of uncertainty” - Shannon
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Informal Source Coding Theorem

Informal Source Coding Theorem

N i.i.d. r.v.s each with entropy H(X ) can be compressed into more
than N H(X ) bits with negligible risk of information loss, as N tends
to infinity

Converse of Informal Source Coding Theorem

If N i.i.d. r.v.s each with entropy H(X ) are compressed into fewer
than N H(X ) bits, it is virtually certain that information will be lost
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Source Coding Theorem (A more formal definition)

Source Coding Theorem
Given discrete r.v. X and ε > 0, ∃ positive integer N such that ∀
integers n > N , ∃ an encoder which takes n i.i.d. repetition of the
source, X1,...,Xn and maps it to n(H(X ) + ε) binary bits such that
the source outcomes are recoverable from the bits with probability of
at least 1− ε
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The Source Coding Theorem Challenge

Alice gives Bob real number ε > 0 and a discrete r.v. X

Bob gives Alice positive integer N

Alice gives Bob positive integer n > N

Bob constructs an encoder that
1 takes in n i.i.d. repetition of X
2 outputs n(H(X ) + ε) binary bits
3 inputs are recoverable with at least probability 1− ε

The Source Coding Theorem states that Bob always wins this
challenge!
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Example of The Source Coding Theorem

Challenge(1)

Alice gives Bob real number ε = 1
30
> 0 and a discrete r.v. X

where


P(X = A) = 1

2

P(X = B) = 1
3

P(X = C ) = 1
6

Note H(X ) ≈ 1.459 bits

Bob gives Alice positive integer N = 1

Alice gives Bob positive integer n = 2 > N
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Example of The Source Coding Theorem

Challenge(2)

Bob constructs an encoder as follows:

AA→ 000

AB → 001

AC → 010

...

CB → 111

CC → encoder explodes

This encoder
1 takes in 2 i.i.d. repetition of X
2 outputs n(H(X ) + ε) ≈ 2.98 binary bits
3 inputs are recoverable with at least probability 29

30 (This encoder
actually works with probability 35

36 )

Kwing Hei Li (CHU) Understanding the Source Coding Theorem October 21, 2020 12 / 24



Example of The Source Coding Theorem

Challenge(2)

Bob constructs an encoder as follows:

AA→ 000

AB → 001

AC → 010

...

CB → 111

CC → encoder explodes

This encoder
1 takes in 2 i.i.d. repetition of X
2 outputs n(H(X ) + ε) ≈ 2.98 binary bits
3 inputs are recoverable with at least probability 29

30 (This encoder
actually works with probability 35

36 )

Kwing Hei Li (CHU) Understanding the Source Coding Theorem October 21, 2020 12 / 24



Limits to data compression

Always possible to compress data with code rate more than
entropy of source with negligible risk of information loss

Impossible to compress data with code rate lower than entropy
of source, without losing information

Lossless data compression methods, e.g. Huffman codes
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Operational meaning of Shannon’s entropy

Informally, operational definition describes how you can measure
an abstract concept through empirical observations or a set of
procedures

Theorem provides operational definition to Shannon’s entropy

Shannon’s entropy = limit of how well you can compress the
source
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Weak Law of Large Numbers (WLLN)

Weak Law of Large Numbers
Let X1, X2,... be an infinite sequence of i.i.d r.v. with expected value
E(Xi) = µ for all i = 1, 2, ...
Let sample average Xn = 1

n

∑n
i=1 Xi

Then for all ε > 0, limn→∞ P(| Xn − µ |< ε) = 1

Informally, the more you sample a r.v., the closer the mean gets
to the expected value

Example: Consider a game where you lose $ 6 if you roll 6 but
you win $ 1 otherwise
Expected value of game = $- 1

6

If you play many times ≈ losing $ 1
6

every time you play it!
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Asymptotic Equipartition Property (AEP)

Consider discrete r.v. X with possible outcomes x1,...,xm which
occur with probability P(x1),...,P(xm)

Let Y ∼ − logP(X ).

Y is surprisal of outcome of X !
So E(Y ) = −

∑m
i=1 P(xi) logP(xi)

= H(X )

Therefore given n i.i.d r.v. X1, ...,Xn ∼ X ,
We have
= 1

n

∑n
i=1− logP(Xi)

= 1
n

∑n
i=1 Yi (Yi ∼ Y )

→ H(X ) as n→∞ (WLLN)

(The AEP is just a special case of WLLN where mean of Yi ’s
tends to entropy of X !)
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Typical Set (TS)

Definition
Let X1, X2,... be an infinite sequence of i.i.d r.v.s with same
distribution as X
The typical set
Aε
n = {(x1, ..., xn) : | ( 1

n

∑n
i=1 - logP(xi))− H(X ) |< ε}

where xi is the outcome of Xi for i = 1, 2, ...

Properties of TS:

1 By AEP, since 1
n

∑n
i=1 - logP(Xi)→ H(X ) as n→∞,

P((x1, ..., xn) ∈ Aε
n)→ 1 as n→∞

2 By the definition of TS, if (x1, ..., xn) ∈ Aε
n then

| ( 1
n

∑n
i=1 - logP(xi))− H(X ) |< ε

⇒ − 1
n

logP(x1, ..., xn) < H(X )− ε
⇒ 2−n(H(X)+ε) < P(x1, ..., xn)
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Checkpoint

Started with WLLN

Proved AEP with WLLN

We defined TS and noticed 2 properties

1 By AEP, the probability a sequence of outcomes exists in TS
tends to 1 as n increases

2 By the definition of TS, if a sequence exists in the typical set,
the probability it occurs is larger than 2−n(H(X )+ε)
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Chocolate Cake Example(1)

Consider a chocolate cake that is cut into multiple pieces

Volume of the cake is smaller than x units
Volume of each piece of the cake is larger than y units

What is maximum number of pieces of chocolate cake I can
possibly have?

It is simply x
y

!
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Chocolate Cake Example(2)

Consider a TS with many sequences as members

Probability a sequence exists in the set is less than 1(Trivial)
Probability a sequence in the set occurring is larger than
2−n(H(X )+ε) (Definition of TS)

What is maximum possible number of sequences in the typical
set?
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Chocolate Cake Example(3)

What is maximum possible number of sequences in the typical
set?

It is simply 1
2−n(H(X )+ε) = 2n(H(X )+ε)

Important observation: We simply need n(H(X ) + ε) binary bits
to encode every sequence in the typical set!
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Proof of Achievability (Bob’s Strategy)

1 Given ε > 0 and discrete r.v. X , give Alice positive integer N
such that for all positive integers n > N , probability that a
sequence of outcomes produced by n i.i.d. samples of X lies in
the TS Aε

n is larger than 1− ε

2 Receive positive integer n > N from Alice and construct TS Aε
n

3 Sort the elements in the TS
4 Construct the encoder as follows:

if input is in TS, output index of sequence in TS using
n(H(X ) + ε) binary bits. (This happens with probability of at
least 1− ε)
otherwise explode
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Summary

1 What?
What is the Source Coding Theorem?

2 Why?
Why is the Source Coding Theorem important?

3 How?
How do you prove the Source Coding Theorem?

“Claude Shannon, the founder of information theory, invented a way
to measure ‘the amount of information’ in a message without
defining the word ‘information’ itself, nor even addressing the
question of the meaning of the message.”
- Information, The New Language of Science (2003)
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The End

Figure: Pixabay: Pixabay License

“Did you find this talk to be a piece of (chocolate) cake?”
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