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Formalizing May’s Theorem

Li, Kwing Hei

Abstract

This report presents a formalization of May’s theorem in the proof assistant Coq.

It describes how the theorem statement is first translated into Coq definitions, and

how it is subsequently proved. Various aspects of the proof and related work are

discussed. To the best of the author’s knowledge, this project is the first documented

attempt in mechanizing May’s Theorem.

1 Introduction

In 1952, Kenneth May published a mathematical theorem on social choice theory, which
establishes a set of necessary and sufficient conditions for simple majority voting [13].
This result is now known as May’s theorem. Though not as famous as Arrow’s theo-
rem [2] and the Gibbard-Satterthwaite theorem [9], May’s theorem is still considered to
be one of the "minor classics" in voting theory [4]. While the other above theorems in
economics have been formalized in proof assistants [15][18], May’s theorem has never been
mechanically proved.

In this report, I present the first mechanized proof of May’s theorem, which I im-
plemented in Coq [5]. Proving the theorem in Coq not only increments the library of
all proved theorems, but also provides insights in mechanizing results from social choice
theory in a type theory based proof assistant. The structure of the Coq proof differs from
the conventional proof sketch, and this report explains various subtle details of it.

In this document, I first present the high-level statement of the theorem in Section 2. In
Section 3, I then elaborate how this statement is translated into Coq definitions. Section 4
and 5 then detail the structure of the Coq proof in the if direction and only if direction,
respectively. In Section 6, I consider the nature of the proof itself by discussing its
usefulness, correctness, and the extra extensionality axiom the proof relies on. Section 7
concludes the report and examines various future directions.

It should be noted that this document only mentions a small but important subset
of the lemmas that constitute the main backbone of the Coq proof. A large number of
relatively minor lemmas that the proof uses are omitted from this report for the sake
of brevity. Although many of these lemmas appear straightforward at first glance, their
mechanical proofs are quite convoluted and require much case analysis or extensive proof
by induction. One example is the following lemma which states if two distinct elements,
say x and y, are members of a list containing no duplicates, the list can be expressed
as the concatenation of five lists, two of which are singleton lists containing x and y,
respectively12:

1The Coq keyword Lemma allows us to write a proposition for which its proof is then built using tactics.
2NoDup l expresses that the list l contains no duplicates.
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Lemma two_elements_exist {A:Type} (l:list A) x y `{!NoDup l} `{x6=y}:

In x l → In y l → ∃l1 l2 l3,

l=l1++[x]++l2++[y]++l3 ∨ l=l1++[y]++l2++[x]++l3.

2 May’s Theorem

We now establish certain definitions following social choice theory nomenclature.

Consider an election with exactly two candidates x and y, and a finite set of voters.
Each voter can cast a vote, called a preference, indicating that they either prefer x over
y, y over x, or that they are indifferent between x and y.

A social choice function is a function that maps each possible list of preferences to
a unique result, either x wins, y wins, or there is a tie between the two candidates.

Not all social functions are what we would perceive to be fair. May identifies several
properties.

A social choice function is anonymous if it is a symmetric function of its arguments.
Each voter is treated the same by the social choice function, and swapping the preference
of any two voters will yield the same election result.

A social choice function is neutral if flipping the preference of each voter will also flip
the function’s result. (Here, an indifference preference remains unchanged after a flip).
Both candidates are treated equally by the social choice function and swapping the names
of the candidates will not affect the final result.

A social choice function is monotone if for any list of preferences where the result is
indifferent or favorable to x, changing any voter’s preference in a positive way towards x

results in x winning the election. (Here, changing a preference in a positive way towards
x means changing a y vote to an indifference one, a y to a x, or an indifference vote to a
x.) This means the social choice function responds to changes of individual preferences
in a "positive" manner.

Suppose the number of people who vote for x is a and the number of people who vote
for y is b. The simple majority function is the social choice function that decides x

wins if a > b, y wins if b > a, or that the two candidates tie otherwise.

May’s theorem states that a social choice function is anonymous, neutral, and mono-
tone if and only if it is the simple majority function. This means that anonymity, neutral-
ity, and montonicity form a set of necessary and sufficient conditions for a social choice
function to be the simple majority function.

3 Definitions and assumptions in Coq

In my proof, I used the Finite typeclass, from the library coq-std++ [1], to express the
finite set of voters being considered3:

Context `{Finite voter}.

As shown below, this typeclass4 provides three fields for the voter type: the field enum

3The Coq keyword Context declares variables in the context of a section. In this case, the type voter

belonging to the typeclass Finite.
4Typeclasses are defined with the Coq keyword Record.
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voter is a list containing all the voters, NoDup_enum voter is a proposition stating that
the list contains no duplicates, and elem_of_enum voter is a proposition stating that
every term of the type voter is an element of the list. All three fields turn out to be
equally important and are used extensively throughout the mechanical proof.

Record Finite (A : Type) (EqDecision0 : EqDecision A) : Type :=

Build_Finite { enum : list A;

NoDup_enum : NoDup enum;

elem_of_enum : ∀ x : A, x ∈ enum }.

Because whenever we want to reason about the two candidates (whether it is the
preference of a voter or the result of the social choice function), we always have a third
case where they tie, it is convenient to express the candidate type as option bool.
Assuming the candidates are x and y, this allows us to represent x being preferred over
y by Some true, y being preferred by Some false, and a tie with None. The use of
bool also allows us to reason about the duality of preferences with simple bool functions
like negb. The type for preferences and social_choice_function are simple function
types56:

Definition preferences := voter → candidate.

Definition social_choice_function := preferences → candidate.

The anonymous property is expressed via a swap function, which swaps the preferences
of two voters, while leaving the rest unchanged:

Definition swap (v1 v2:voter) (p:preferences) :=

fun v =>

if bool_decide (v=v1) then p v2

else if bool_decide (v=v2) then p v1

else p v.

Definition anonymous (scf:social_choice_function):=

∀ p v1 v2, scf p = scf (swap v1 v2 p).

The neutral property is expressed via a flip and flip_vote function. The for-
mer flips a single candidate term, while the latter expresses the flipped version of the
preferences of all voters:

Definition flip cand :=

match cand with

| Some b => Some (negb b)

| None => None

end.

Definition flip_vote (p:preferences) :=

fun v:voter=> flip (p v).

Definition neutral (scf:social_choice_function) :=

∀ p, scf p = flip (scf (flip_vote p)).

The monotone property is expressed with an update function that updates the pref-
erence of a single voter while leaving the rest unchanged:

5The Coq keyword Definition binds a term to a variable name.
6The text description of the theorem talks about a list of preferences, but in Coq, it is simpler to

model the preferences of voters as a function type.
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Definition update v i (p:preferences) :=

fun v’:voter =>

if bool_decide(v’=v) then i else p v’.

Definition monotone (scf:social_choice_function) :=

∀ p , (scf p = Some true ∨ scf p = None)→

(∀ v, p v = Some false → scf (update v None p) = Some true) ∧

(∀ v, p v = Some false → scf (update v (Some true) p) = Some true) ∧

(∀ v, p v = None → scf (update v (Some true) p) = Some true).

After defining count, count_helper, and various predicate functions for candidates
like is_some_true, we can express the majority_election rule as such:

Definition majority_election (p:preferences) :=

let true_num := count is_some_true p in

let false_num := count is_some_false p in

if bool_decide (false_num < true_num ) then Some true

else if bool_decide (true_num < false_num) then Some false

else None.

Finally, one can express the main mays_thm with the following proposition7:

Theorem mays_thm scf:

anonymous scf ∧ neutral scf ∧ monotone scf ↔ scf = majority_election .

One must also mention that the mechanical proof requires an additional axiom that is
outside Coq’s usual type-based calculus8. Specifically, we include the axiom of functional
extensionality. The reason for this inclusion is discussed in subsection 6.4.

Axiom functional_extensionality {A B} (f g : A → B):

(∀ x, f x = g x) → f = g.

4 If direction

For the if direction of the theorem, we prove that the simple majority voting system is
anonymous, neutral, and monotone.

4.1 Anonymity

The anonymous property of the simple majority function is mainly supported by the
following invariant on swap9:

Lemma swap_invariant_count p f l v1 v2 `{!NoDup l}:

In v1 l → In v2 l → count_helper f p l = count_helper f (swap v1 v2 p) l.

This lemma states that given a subset of voters, swapping the preferences of any two
voters within the subset does not change the overall number of each type of preference. In

7The Coq keyword Theorem works the same as Lemma.
8The Coq keyword Axiom extends the environment with an axiom.
9The argument f ranges over predicate functions for candidates, like is_some_false.
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fact this lemma relies on another similar one, which asserts that swapping the preferences
of any two voters not within the subset also does not change the frequency of the types
of preferences:

Lemma swap_not_in_list p f v1 v2 l:

∼In v1 l → ∼In v2 l → count_helper f p l =

count_helper f (swap v1 v2 p) l.

It is also possible that we choose to swap the preference of a voter with itself, in which
case, the list of preferences remains unchanged:

Lemma swap_same v p: (swap v v p) = p.

4.2 Neutrality

The neutrality of the simple majority function is proved by showing that the frequency
of Some true and Some false are swapped whenever we perform a flip_vote on a list
of preferences:

Lemma flip_reverse_count1 p l:

count_helper is_some_false (flip_vote p) l =

count_helper is_some_true p l.

Lemma flip_reverse_count2 p l:

count_helper is_some_true (flip_vote p) l =

count_helper is_some_false p l.

4.3 Monotonicity

To show that the simple majority function is monotone, I proved a number of lemmas
that specify how the number of each type of preference changes if we update a certain
voter’s preference for each possible case. Here I present one of them, which states that
changing a Some false vote to a None decreases the Some false vote frequency by one:

Lemma update_count_lemma_1 v p l `{NoDup l}:

p v = Some false → In v l →

count_helper is_some_false p l =

1 + count_helper is_some_false (update v None p) l.

There is also the case where if we are considering a subset of voters, and we update
someone not in the subset, this does not affect the frequency of each type of preference
within the original subset:

Lemma upgrade_not_in_list f p v cand l:

∼In v l → count_helper f p l = count_helper f (update v cand p) l.

5 Only if direction

For the only if direction of the theorem, we prove that for any social choice function,
denoted as scf, that is anonymous, neutral, and monotone, it is equivalent to the simple
majority function.
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Given our goal scf = majority_election, by the axiom of functional extensionality,
it suffices to prove that for any list of preferences, denoted as p, it is the case that scf

p = majority_election p. Subsequently, we perform case analysis of all the possible
outcomes of scf p and majority_election p. For the three cases where they match, the
statement follows trivially. Thus, it suffices to show that if scf p 6= majority_election

p, we can achieve a contradiction where we can prove the False proposition.

There are six cases where scf p 6= majority_election p:

Case number Preference condition scf p

1 count is_some_false p < count is_some_true p Some false

2 count is_some_false p < count is_some_true p None

3 count is_some_true p < count is_some_false p Some true

4 count is_some_true p < count is_some_false p None

5 count is_some_false p = count is_some_true p Some false

6 count is_some_false p = count is_some_true p Some true

Actually, half of the cases are redundant. For example if case number 3 holds, we can
reduce it to a variation of case number 1. To see why this is the case, assume case number
3 holds, and consider the list of preferences with each element flipped, i.e. flip_vote p,
denoted as p′. By the two lemmas from subsection 4.2, we have count is_some_false p′

< count is_some_true p′. In addition, by the neutrality condition of scf, we have scf

p′ = Some false. We now have a variation of case number 1 where we replace p with p′.
In other words, we only need to find a contradiction for each of the following three cases:

Case number Preference condition scf p

1 count is_some_false p<count is_some_true p Some false

2 count is_some_false p<count is_some_true p None

3 count is_some_false p=count is_some_true p Some false

For the rest of this section, unless otherwise specified, we use a and b to denote the
number of Some true and Some false votes in the list of preferences p, respectively.

5.1 Case 1: a > b and scf p = Some false

Suppose a > b and scf p = Some false. Consider flip_vote p, the list of all the
preferences flipped, denoted as p1. The following three statements can be proved:

1. Using proof by induction, the number of Some true and Some false votes in p1

are flipped with respect to that of p, i.e. count is_some_false p1 = a and count

is_some_true p1 = b.

2. By case analysis, the preference of a voter in p is None if and only if their preference
in p1 is None, i.e. ∀ voter, p voter = None ↔ p1 voter = None.

3. By neutrality of scf, we have scf p1 = Some true.

We then construct the list of preferences p2, which is the same as p1 but we update the
first (a − b) Some false votes in p1 to Some true via the function upgrade_vote_list10 :

10The Coq keyword Fixpoint is the same as the keyword Definition, except that it is used specifically

for recursive definitions. It also performs additional checks that the defined function is total.
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Fixpoint upgrade_vote_list p l:=

match l with

| [] => p

| hd::tl => update hd (Some true) (upgrade_vote_list p tl)

end.

The following three statements then follow:

1. Using proof by induction, the number of Some true and Some false votes in p2 are
the same as that of p, i.e. count is_some_true p2 = a and count is_some_false

p2 = b.

2. By showing that None votes are not changed from p1 to p2, it is the case that the
preference of a voter in p is None if and only if their preference in p2 is None, i.e. ∀
voter, p voter = None ↔ p2 voter = None.

3. By monotonicity of scf and the following lemma, we have scf p2 = Some true:

Lemma upgrade_vote_list_monotone scf p l:

monotone scf →

scf p = Some true →

scf (upgrade_vote_list p l) = Some true.

Lastly, after defining a function for swapping a list of pairs of preferences, we show
that there exists a simple list of swaps that enables us to transform p2 to p:

Fixpoint swaps p l:=

match l with

| [] => p

| (x,y)::tl => swap x y (swaps p tl)

end.

Lemma same_true_num_implies_swappable p p’:

(∀ x : voter, p x = None ↔ p’ x = None) →

count is_some_true p = count is_some_true p’ →

∃ l , p = swaps p’ l.

In fact, this list can be constructed easily: it is the result of zipping the list of voters
who voted Some true in p and Some false in p2, and the list of voters who voted the
other way round, as highlighted by the following function:

Definition count_true_same_swap_list_helper p p’ l:=

let l1:= left_true_right_false p p’ l in

let l2:= left_false_right_true p p’ l in

zip l1 l2.

Various properties of this list have to be proved. For example, one has to prove that
the two lists are of the same length, so no element is dropped during the zip process:

Lemma count_true_difference_relation p p’ l `{!NoDup l}:

(∀ x, p x = None ↔ p’ x = None) →

count_helper is_some_true p l = count_helper is_some_true p’ l →

length (left_true_right_false p p’ l) =

length (left_false_right_true p p’ l).
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Lastly, by the anonymity property of scf, we then have scf p = Some true. How-
ever, we started with the assumption that scf p = Some false, and thus a contradiction
is achieved.

5.2 Case 2: a > b and scf p = None

In this case, where a > b and scf p = None, the proof is similar to that of case number
1. However, during the construction of p2, we need a different invariant to prove that scf
p2 = Some true. Specifically, we use the following lemma together with the fact that the
number of voters to be updated is non-zero (since a − b > 0):

Lemma upgrade_vote_list_monotone_weak scf p l:

monotone scf → (scf p = Some true ∨ scf p = None) →

(scf (upgrade_vote_list p l) = Some true ∨

scf (upgrade_vote_list p l) = None).

5.3 Case 3: a = b and scf p = Some false

In this case, where a = b and scf p = Some false, the entire proof for case number 1
almost works perfectly here for us to achieve a contradiction as well. The main difference
is that we need not update any voters to produce p2 from p1 (as a - b = 0), i.e. p2 =

p1.

6 Discussion

6.1 Why is this formalization useful?

The first obvious answer is that formalizing the proof of a theorem allows us to accept
it as fact with more certainty. Humans make mistakes, and it is not uncommon to hear
mathematical proofs widely accepted by the community are found to contain minor gaps
and inaccuracies afterwards [8][11]. While it is unlikely for May’s theorem to be false,
formalizing it enables us to ensure we do not miss any edge cases in high-level proof
sketches.

This project also enables one to gain a precise understanding of the technique used
within the proof. Defining and proving properties of each step rigorously allows the
programmer to gain deeper insights into how and why a proof works. In particular,
from a more personal perspective, the first proof I wrote relies on the axiom of excluded
middle, which is an axiom from classical logic that is not included in Coq’s intuitionistic
logic system. Only during a thorough review of the code did I realize that the proof can
be rewritten slightly to circumvent using the axiom, and thus allowing my most recent
proof to be completely constructive.

Nonetheless, I believe whether a project is useful or not is sometimes not the best
way to justify its value. I mainly pursued working on this project simply because I was
interested in it. To quote Benthem Jutting’s PhD thesis [12]:

"A further motive, for the author, was that the work involved in the project appealed to
him."
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6.2 Is this theorem not obvious?

It might be true that most intermediate steps of the proof are not difficult to understand.
However this is not equivalent to saying that the theorem is obvious or that the project
itself is trivial.

Firstly, as mentioned at the beginning, though most intermediate steps might be easy
to comprehend, the proof of those steps might be long and tedious. When reading a
pen-and-paper proof, we automatically infer various properties implicitly, but in a proof
assistant, everything must be stated and proved explicitly, e.g. whether a list has no
duplicates, whether an element is contained (or not contained) within a list.

In addition, without knowing the trick beforehand, it is not exactly straightforward
how one can prove May’s theorem, especially for the only if direction. Perhaps, it might
be more accurate to describe the proof to be elegantly short as opposed to describing the
theorem as trivial.

6.3 Is this proof correct?

There are two potential sources of errors which might lead to the proof being incorrect.
Luckily, both are unlikely.

Firstly, the Coq proof itself might not be sound, meaning that we can trace the error
back to a bug in the kernel of the Coq proof assistant. Coq is based on the Calculus of
Inductive Constructions [16], which is a reliable and well-understood type theory. Coq
also satisfies the de Bruijn criterion [3], meaning it generates proof terms that can be
verified by an independent and relatively small kernel. As a powerful verification tool
that has been maintained for more than thirty years, one can safely trust and assume the
correctness of Coq’s kernel without losing much sleep.

Another source of error might be due to the definitions stating a completely different
theorem instead of that of May’s. To reduce the likelihood of this mistake, definitions are
written as clearly as possible and are written to reflect the original texts closely.

There is one part where the Coq proof differs from the original paper. In May’s paper,
there is actually a fourth property in the set of sufficient and necessary properties for sim-
ple majority voting, called decisiveness, which states the function must be defined and
single-valued for all possible lists of preferences. This, however, is exactly the definition
for a function in mathematics anyway! As so, many subsequent papers on the theorem
omitted this property in the statement [7], which I also followed suit.

6.4 Is the axiom of extensionality necessary?

Recall that the mechanical proof assumes the axiom of extensionality, which is not part of
Coq’s standard library. It is used because when we assert that two social choice functions
are equivalent, we implicitly mean that the functions agree on every possible input.

One can circumvent the need for the axiom by redefining May’s theorem slightly:

Theorem mays_thm2 scf:

anonymous scf ∧ neutral scf ∧ monotone scf ↔

∀ p, scf p = majority_election p.

I still stuck with the first definition (see Section 3), since I think that definition of
equality is clearer, as justified by Subsection 6.3.
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7 Conclusion and future directions

In this report, I showed how May’s theorem is formalized in the Coq proof assistant. I
discussed several aspects of the Coq proof, including the translation from the theorem
statement, various lemmas used in the proof, and its correctness.

Since the original publication, various others have extended May’s theorem in multiple
ways, e.g. when there is an infinite number of voters [7], or when there are more than two
candidates [10]. A possible extension is to formalize those generalized theorems in Coq
as well.

Being the first formalization of May’s theorem, this Coq proof establishes another step
into formalizing fundamental results in social choice theory. Another extension would be
to continue formalizing other interesting theorems in this area, such as the median voter
theorem [6], the McKelvey-Schofield chaos theorem [14], and Sen’s possibility theorem [17].
It might also be worthwhile to develop a library containing voting-related primitives and
lemmas for formalizing similar theorems.
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