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Abstract

As modern programs become more concurrent, we need to design good mathematical models to reason
about distributed algorithms. This report concerns two incompatible models studied by two separate
lines of research on asynchronous distributed systems. On the one hand, we have HKR’s model [9],
whose task solvability power is well-studied and has deep connections with combinatorial topology,
as captured by the Asynchronous Computability Theorem [10]. On the other hand, we have GMT’s
model [8], which is proven to possess a range of elegant geometric semantics.

The contributions of this report are twofold.

Firstly, we develop a novel unified mathematical framework that enables us to reason about both
models at the same time. This framework is powerful enough to model various aspects of the
distributed system, e.g. protocol types, execution traces, and solvability properties.

Secondly, as a significant proof of concept, we utilize this framework to prove the Fundamental
Theorem of Asynchronous Distributed Models, a new result that shows that a task description
specification is solvable by HKR’s model if and only if it is solvable by GMT’s model. This fundamental
theorem is the first result to unite the results of the two lines of research, allowing results on task
solvability of one model to be shared with the other. For example, the Asynchronous Computability
Theorem can be trivially extended to describe the task solvability power of GMT’s model, in addition
to HKR’s model.
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No AI-assisted tools employing generative Large Language Models are used in this project;
they all lack the necessary creativity and imagination to make the proofs work.
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Chapter 1

Introduction

In Computability Theory, we are often interested in determining whether a problem is decidable or
not, i.e. if there exists an algorithm that always leads to a yes-or-no answer for solving the problem.
For example, the halting problem [3] is widely known to be undecidable over Turing machines (or any
other Turing-complete model of computation), and one can subsequently prove the undecidablity of
other problems via a reduction argument.

However, modern software does not normally consist of single machines running individually, but a
large ecosystem of machines running in tandem while communicating with each other via interfaces,
e.g. reading and writing on shared memory, message passing through channels. From the small
multi-core processor to the large wide-area network, one can find concurrency everywhere.

In light of this, one would naturally aim to generalize the original decidability problem in order
to account for this concurrency aspect. Suppose we have a finite set of “machines” interacting
with some sort of communication primitive. What kind of distributed tasks are solvable? Is there any
mathematical property behind these distributed tasks that makes them solvable, or perhaps unsolvable?

1.1 Background

The solvability of distributed tasks has been explored by various researchers beginning as early as
the 1980s. Perhaps the most famous result in this field is the FLP impossiblity result [4], which
proves the long-standing conjecture that fault-tolerance consensus is unachievable in an asynchronous
message-passing model.

In this report, we highlight two lines of research on asynchronous distributed systems.

The first is that of Herlihy et al. [9]. Herlihy and his collaborators found deep connections be-
tween the solvability of distributed tasks and structures in combinatorial topology. In particular, the
Asynchronous Computability Theorem [10] precisely presents a sufficient and necessary condition
to the topological structure of a distributed task, in order for it to be solvable by a very specific
shared-memory distributed model, which we refer to as HKR’s model in this report.

On the other hand, Goubault et al. [8] generalized various aspects of HKR’s model, and established
various geometric semantics for their model. We call their model GMT’s model. However, the
task solvability power of GMT’s model has neither been explored nor studied. Instead, only three
propositions on task solvability were presented in the paper [8], which were not proved. The authors
only pointed out that the proofs could be found in HKR’s work. This, however, is not satisfactory,
especially because GMT’s definition of task solvability, model, and trace execution differs from
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HKR’s, and it is not obvious why HKR’s proofs would work for GMT’s propositions. In fact, one of
the propositions is not true if one uses HKR’s definition of task solvability (see subsection 5.2.1).

To summarize, we now have two incompatible definitions of asynchronous distributed systems. The
task solvability power of the former model is well understood, while the latter is more general and is
proven to have elegant geometric semantics. There is, however, no literature as to why and how both
models are equivalent, or even related to one another. This report strives to fill this gap by showing
that the task solvability power of both models is equivalent.

1.2 Contributions

The aim of this document is to study the task solvability power of GMT’s model and how it relates to
HKR’s model. We do this in two steps.

Firstly, building upon GMT’s work, we develop a unified mathematical framework that enables one
to reason about both GMT’s and HKR’s models, deriving various reduction proofs within this new
framework. This framework is powerful enough to model various aspects of a distributed system, e.g.
protocol types, execution traces, solvability properties.

Secondly, we demonstrate the flexibility and power of our framework by proving the following
theorem, a new result that relates the task solvability power of GMT’s and HKR’s models:
Theorem (Fundamental Theorem of Asynchronous Distributed Models (Simplified)). Given task
description Θ and solvability property 𝑃, Θ is 𝑃-solvable by GMT’s model if and only if Θ is
𝑃-solvable by HKR’s model.

Informally, a task description is the specification of the problem we want our distributed model to
solve, i.e. a set of valid input-output pairs. A solvability property is a predicate which depends on
the task description and various aspects of the model, defining what it means for a model to solve the
distributed problem.

This theorem is a testimony to the success of our unified theory of asynchronous distributed systems.
It succinctly describes how the task solvability of GMT’s abstract distributed model is equivalent
to HKR’s specialized model from the Asynchronous Computability Theorem. Note that unlike all
past results, the statement of our fundamental theorem, and subsequently the proofs, are specifically
designed to be task solvability-agnostic. This means the theorem holds for any definition of solvability
property, as long as it is a predicate of the correct type (see subsection 2.2.5). This important feature
means that the result is general enough to hold for both GMT’s and HKR’s definition of task solvability,
as well as any other instances of the solvability property.

Since this unified framework is novel, all proofs presented here are also novel. A few proofs are
inspired by known algorithms (which the author acknowledges explicitly in later sections) but the
treatment of lifting these algorithms to fit our framework remains novel.

In chapter 2, we describe the basic framework of our report, and use it to define our most general
definition of an asynchronous distributed system, i.e. GMT’s model. Chapter 3 examines how various
aspects of our model can be specialized to account for more interesting models, and we use a
combination of these variants to define HKR’s model. After introducing both models, in chapter 4, we
prove the above fundamental theorem, by showing how a protocol of one model can be transformed
to another via various intermediate forms, and similarly, vice versa. Lastly, in chapter 5, we present
various directions for enriching our unified theory of asynchronous distributed systems.

Let us begin.
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Chapter 2

Preliminaries

In this chapter, we examine the basics of the theoretical framework we use for the rest of this report.

We start off by presenting some assumptions on the distributed system we want to model with our
framework which should capture aspects of a general asynchronous distributed system. We then
formally present various components of our model, while proving relevant properties along the way.
We present the definition of our most general base model, i.e. GMT’s model, and conclude by
discussing how our base model is faithful to our assumptions we present at the start of this chapter.

2.1 Assumptions

We make the following base assumptions about our distributed system. These assumptions capture a
general abstract notion of an asynchronous distributed system.

1. The system contains a finite number of processes.

2. The sets of valid input and output values are finite.

3. Processes communicate via a shared-memory array through two operations: an atomic read in
which the process scans the entire array and updates their local state, and a write in which the
process updates its own memory cell according to its local state.

4. The set of processes participating in the protocol is arbitrary. The set of allowed outputs of
the overall system might also be different depending on the initial set of participating processes.
However, this set is not revealed to the processes beforehand.

5. Participating processes might crash at any point of the execution, and never recover afterwards.
Together with the previous assumption, one can say the number of active processes can only
decrease during the execution trace.

6. The model is asynchronous, i.e. there are no synchronization primitives on the processes,
allowing them to execute at different speeds.

7. Once a process changes its local state to a valid output value, it cannot perform any other actions,
other than crashing. We call this a commit.

8. The program executed by each process is wait-free [11], i.e. each non-faulted process must be
able to commit in a finite amount of steps regardless of the actions of other processes.
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2.2 Model Definition

Given our assumptions, we now present the formal definition and semantics of our framework’s model.
Note that our definition is heavily inspired by that of GMT’s work [8] as the author finds their notation
to be more familiar to the working computer scientist.

2.2.1 Basic Values

We fix two disjoint finite sets I and O, representing the input and output values, respectively. We also
fix a special unknown value ⊥ ∉ I∪O. Given a set 𝑠 not containing ⊥, we write 𝑠⊥ to denote 𝑠 ∪ {⊥}.

Informally, the ⊥ value can represent three things. When provided as an input for a process, this
represents that it does not participate in the protocol. Moreover, if a participating process crashes
halfway through the execution, we take its output value to be ⊥. Later, when we introduce the notion
of shared-memory in subsection 2.2.4, ⊥ is the default value stored in every cell of the global memory.

We fix a finite number 𝑛 ∈ N of processes, each labelled from 0 to 𝑛 − 1. We write [𝑛] for the set
{0, 1, . . . , 𝑛 − 1}.

Given a set 𝑠, an 𝑛-tuple 𝑚 ∈ 𝑠𝑛, 𝑖 ∈ [𝑛], and a value 𝑥 ∈ 𝑠, we write 𝑚 [𝑖] or 𝑚𝑖 for the 𝑖-th component
of 𝑚 and 𝑚 [𝑖 ← 𝑥] for 𝑚 with the 𝑖-th component replaced by 𝑥. In addition, if we have 𝑝 ⊆ [𝑛],
we write 𝑚 [𝑝 ← 𝑥] for 𝑚 with each 𝑖-th component replaced by 𝑥 for each 𝑖 ∈ 𝑝. Finally given
𝑚 ∈ (N→ 𝑠𝑛), we write 𝑚 [( 𝑗 , 𝑖) ← 𝑥] as the same function 𝑚 but with the 𝑗-th component replaced
by 𝑚( 𝑗) [𝑖 ← 𝑥] for all 𝑗 ∈ N.

2.2.2 Protocol

Intuitively, a protocol is a family of programs, where each individual program is executed by a distinct
process. It should describe how the state of the overall system changes when a process writes to or
reads from the main memory. Thus, we define a protocol as follows:

Definition 2.2.1 (Protocol). A protocol is a tuple (V, 𝜋), where V is a superset of I ∪O ∪ {⊥}, and 𝜋

consists of two families of functions:

𝜋𝑤𝑖
: V × V→ V and 𝜋𝑟𝑖 : V × V𝑛 → V

indexed by 𝑖 ∈ [𝑛], satisfying the following three conditions:

𝜋𝑤𝑖
(𝑥, 𝑦1) = 𝜋𝑤𝑖

(𝑥, 𝑦2) ∀𝑥 ∈ V \ O⊥,∀𝑦1, 𝑦2 ∈ V,∀𝑖 ∈ [𝑛] (Global Memory Irrelevance)
𝜋𝑤𝑖
(𝑥, 𝑦) = 𝑦 ∀𝑥 ∈ O⊥,∀𝑦 ∈ V,∀𝑖 ∈ [𝑛] (Write After Commit)

𝜋𝑟𝑖 (𝑥, 𝑚) = 𝑥 ∀𝑥 ∈ O⊥,∀𝑚 ∈ V𝑛,∀𝑖 ∈ [𝑛] (Read After Commit)

We sometimes simply write 𝜋 for the protocol if the underlying set V can be inferred easily.

Intuitively, 𝜋𝑤𝑖
defines how the 𝑖-th process changes a certain global memory cell according to its local

state. It takes in two arguments, the former being the value of the local state and the latter being the
value of the memory cell it is writing into. Note that the Global Memory Irrelevance condition ensures
that for a normal write, the result does not depend on the original value the memory cell stores before
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the write. This creates the desired effect that the write only depends on the process’ local memory
and nothing else (there are no hidden reads performed). When the local value is in O⊥, the condition
Write After Commit creates the desired effect that any subsequent write does not change the value of
the memory cell, and thus the entire system. This allows us to capture the notion that the process has
committed, and does not perform any extra actions to change the system’s state, including its own.

On the other hand, 𝜋𝑟𝑖 defines how the 𝑖-th process changes its local state according to its original local
state and an entire memory array block. It takes in two arguments, the former being its local state, and
the latter being the values of the memory array. Similarly to Write After Commit, the condition Read
After Commit ensures that once the process commits, it cannot subsequently change its local state.

2.2.3 Traces

An execution trace describes a possible interleaving of actions performed by a system of concurrent
processes. The actions we are interested in for a trace are reads 𝑟 , writes 𝑤, and crashes 𝑑.

We write the actions of the 𝑖-th process A𝑖 = {𝑟𝑖, 𝑤𝑖, 𝑑𝑖} and actions of all processes A =
⋃

𝑖∈[𝑛] A𝑖.

We define A∗ as the free monoid over A and A𝜔 as the set of countably infinite sequences of actions.
We define the set of traces A∗+𝜔 as A∗ ∪ A𝜔. We write 𝜖 for the empty trace, and 𝑇 ·𝑈 or simply 𝑇𝑈

for the concatenation of two traces 𝑇 and 𝑈 (where 𝑇 must be a finite trace).

We write proj𝑖 : A∗+𝜔 → A∗+𝜔
𝑖

for the projections, keeping only the actions of the 𝑖-th process.
Similarly, we have proj¬𝑖 : A∗+𝜔 → A∗+𝜔 for the projection keeping all actions except those of the 𝑖-th
process. Mutatis mutandis, for all 𝑠 ⊆ [𝑛], we have proj𝑠 and proj¬𝑠 with the obvious meaning. Given
trace 𝑇 , we write dead(𝑇) for the set of indices 𝑖 ∈ [𝑛] where 𝑑𝑖 occurs in 𝑇 .

We may rewrite an execution trace into a numbered trace where all actions are decorated with the
number of reads appearing before, e.g. we write 𝑎𝑝 if there are 𝑝 occurrences of 𝑟𝑖 in the trace
beforehand for any 𝑎 ∈ A𝑖.

Since any non-numbered trace has a corresponding numbered trace and vice versa, we interchange
between using a normal trace and a numbered one. For example, we consider the finite non-numbered
trace 𝑟0𝑟2𝑤0𝑤1𝑟1𝑟1 to be the same as the numbered trace 𝑟0

0𝑟
0
2𝑤

1
0𝑤

0
1𝑟

0
1𝑟

1
1 , and vice versa.

Given finite trace 𝑇 and possibly infinite trace 𝑈, we say 𝑇 is a prefix of 𝑈 if there exists a trace 𝑇 ′

such that 𝑇 · 𝑇 ′ = 𝑈.

In an asynchronous distributed system, actions of each process interleave arbitrarily, and processes
might crash at any point, leading to many possible execution traces. We use a trace property to define
a set of possible execution traces we are interested in for a distributed system.

Definition 2.2.2 (Trace property). A trace property Γ is a subset of A∗+𝜔.

This immediately begs the question: what should the trace property for our base model be? In addition
to allowing arbitrary interleaving of actions, for any non-dead process, we also want them to have
some sort of liveness property, i.e. they eventually execute a write (or a read) for any execution trace.
Moreover, the trace can also contain 𝑑𝑖 actions for any 𝑖 ∈ [𝑛]. Given these considerations, the trace
property ΓFair for our base model is defined as follows:

Definition 2.2.3 (Fair traces). A trace 𝑇 ∈ A∗+𝜔 is fair if for all 𝑖 ∈ [𝑛], proj𝑖 (𝑇) either contains an
infinite number of 𝑟𝑖 and 𝑤𝑖 actions, or contains a 𝑑𝑖 action.

The trace property ΓFair contains all fair traces 𝑇 ∈ A∗+𝜔.
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2.2.4 Non-layered Model

In our framework, processes communicate with each other by reading and writing on some shared
memory1. For our base model, we have a single 𝑛-sized global memory, where each process has
write access to a distinct cell on the array. If a model uses this memory array as the communication
primitive, we call this model a non-layered model.

Given a protocol and a finite trace, we can now define how the state of the system changes for a
non-layered model as follows:

Definition 2.2.4 (Semantics of the non-layered model). Given protocol (V, 𝜋) and a finite trace 𝑇 , we
define the semantics of the non-layered model J𝑇K𝜋 : V𝑛 × V𝑛 → V𝑛 × V𝑛 inductively on the length
of 𝑇 :

J𝑤𝑖 · 𝑇K𝜋 (𝑙, 𝑚) = J𝑇K𝜋 (𝑙, 𝑚 [𝑖 ← 𝜋𝑤𝑖
(𝑙𝑖, 𝑚𝑖)])

J𝑟𝑖 · 𝑇K𝜋 (𝑙, 𝑚) = J𝑇K𝜋 (𝑙 [𝑖 ← 𝜋𝑟𝑖 (𝑙𝑖, 𝑚)], 𝑚)
J𝑑𝑖 · 𝑇K𝜋 (𝑙, 𝑚) = Jproj¬𝑖 (𝑇)K𝜋 (𝑙, 𝑚)

J𝜖K𝜋 (𝑙, 𝑚) = (𝑙, 𝑚)

The definitions of this should not be surprising. For a 𝑤𝑖 action, the 𝑖-th process writes to its assigned
cell with the 𝜋𝑤𝑖

function. For a 𝑟𝑖 action, it reads the entire memory and updates its local state
with the 𝜋𝑟𝑖 action. If a 𝑑𝑖 action is executed, all subsequent actions of the 𝑖-th process are removed,
creating the effect that it crashed and thus does not have any external effects to the state of the system
afterwards.

We use fst and snd to denote the first and second projections of a two element tuple, respectively. So
fstJ𝑇K𝜋 (𝑙, 𝑚) and sndJ𝑇K𝜋 (𝑙, 𝑚) returns the final local state of the processes and the global memory
after executing the trace 𝑇 on base local state 𝑙 and base global memory 𝑚, respectively.

We end this subsection by presenting three lemmas, which appear frequently in subsequent proofs.

Our first result is the Committed value lemma. Due to the Read After Commit condition, after a
process commits, its local state remains unchanged as expected.

Lemma 2.2.1 (Committed value lemma). For all protocols (V, 𝜋), vectors 𝑙, 𝑚 ∈ V𝑛, finite trace
𝑇∈ A∗+𝜔, and 𝑖 ∈ [𝑛], if we have 𝑙 [𝑖] ∈ O⊥, then fst(J𝑇K𝜋 (𝑙, 𝑚)) [𝑖] = 𝑙 [𝑖].

Proof. Proved by strong induction on the length of 𝑇 . See Appendix A.1 □

Our second result, the Constant local memory lemma states that the local memory of the 𝑖-th process
remains unchanged if an execution trace does not contain the 𝑟𝑖 action.

Lemma 2.2.2 (Constant local memory lemma). For all finite traces 𝑇 , protocols (V, 𝜋), 𝑘 ∈ N and
𝑖 ∈ [𝑛], if 𝑇 does not contain 𝑟𝑖, for all 𝑙, 𝑚 ∈ V𝑛, fst(J𝑇K𝜋 (𝑙, 𝑚)) [𝑖] = 𝑙 [𝑖].

Proof. Proved by strong induction on the length of 𝑇 . □

Lastly, the Constant global memory lemma for non-layered models states that the 𝑖-th cell of the global
memory remains unchanged if the trace does not contain the 𝑤𝑖 action.
1 It might seem strange that we use a shared-memory as the communication primitive for a distributed system instead of

message-passing. This is because a shared-memory model is easier to reason about mathematically and is strong enough
to simulate a message-passing model.
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Lemma 2.2.3 (Constant global memory lemma for non-layered models). For all finite traces 𝑇 ,
protocols (V, 𝜋), and 𝑖 ∈ [𝑛], if 𝑇 does not contain 𝑤𝑖, for all 𝑙, 𝑚 ∈ V𝑛, snd(J𝑇K𝜋 (𝑙, 𝑚)) [𝑖] = 𝑚 [𝑖].

Proof. Proved by strong induction on the length of 𝑇 . □

2.2.5 Task Description

We previously defined what a protocol and a trace are, and how they describe the change in state of a
non-layered model. We now focus on the last aspect of the system: what it means for a model to solve
a distributed task.

Given a set 𝑠 containing⊥, we say two vectors 𝑣, 𝑣′ : 𝑠𝑛 are a pair of matching vectors if for all 𝑖 ∈ [𝑛],
we have 𝑣𝑖 = ⊥ if and only if 𝑣′

𝑖
= ⊥.

A task description is the distributed decision task we want our distributed system to solve, which we
define as follows.

Definition 2.2.5 (Task description). A task description is a relation Θ ⊆ I𝑛⊥ × O𝑛
⊥ such that for all

(𝑙, 𝑙′) ∈ Θ, 𝑙 and 𝑙′ are a pair of matching vectors2.

This is not particularly complicated. A pair (𝑙, 𝑙′) in a task description is like a valid input-output pair
of the overall distributed system. So if the initial system takes in 𝑙 and returns 𝑙′, we say the system
solves the task. However, this is not enough since we only considered the case where no processes
crash. We need to extend our definition of solving a task to include the possibility of dying processes.
To provide additional flexibility on this definition, we do not fix a specific definition on task solvability,
but allow the solvablity property to be any arbitrary predicate that depends on four data: the initial
input, the final output, the set of nodes that crash during the trace, and of course, the task specification.

Definition 2.2.6 (Solvability property). A solvability property 𝑃 is a subset of I𝑛⊥ ×O𝑛
⊥ × 2[𝑛] × 2I𝑛⊥×O𝑛

⊥

Now, we tie everything up together by defining what it means for a model to solve a task description
with respect to some solvability property:

Definition 2.2.7 (𝑃-Solvable under the non-layered model). We say a protocol 𝜋 𝑃-solves a task
description Θ under the non-layered model for Γ traces if for all 𝑙 ∈ I𝑛⊥ and all traces 𝑇 ∈ Γ, there
exists a finite prefix 𝑇 ′ of 𝑇 such that 𝑃(𝑙, fst(J𝑇 ′K𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ) holds.

The most interesting aspect of this definition is the part about choosing a prefix for a particular trace.
This is because a trace might be infinite, and we can only reason about the semantics of a system under
a finite execution trace. For any possibly infinite trace and input vector, we are interested in finding a
certain prefix of the trace such that the input vector, the output vector (after executing the prefix trace)
with the values of crashed processes masked with ⊥, the set of crashed processes of the original trace,
and the task description, satisfy the solvability property 𝑃.

We now present the Trace extension lemma. This useful lemma states that if we are able to find a prefix
such that its semantics satisfies a solvability property, any other prefix that extends it also satisfies the
same solvability property. The intuition behind this is that the Committed value lemma ensures that
all committed and non-dead processes maintain the same local state.
2 We write 𝑥 ∈ Θ(𝑦) to mean (𝑦, 𝑥) ∈ Θ.
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Lemma 2.2.4 (Trace extension lemma). For all distributed tasks Θ, protocols (V, 𝜋), 𝑙 ∈ V𝑛, traces
𝑇 , solvability properties 𝑃, if 𝑃(𝑙, fst(J𝑇 ′K𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ) for some finite prefix
𝑇 ′ of 𝑇 , for all finite prefixes 𝑇 ′′ of 𝑇 satisfying 𝑇 ′ ≤ 𝑇 ′′, then

𝑃(𝑙, fst(J𝑇 ′′K𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ)

Proof. Proved by strong induction on the length of 𝑇 . See Appendix A.2. □

Though all our propositions and subsequently, proofs, are all task solvability agnostic, we state the
definition of GMT’s and HKR’s solvability property for completeness.
Definition 2.2.8 (GMT’s solvability property [8]). We define 𝑃GMT(𝑙, 𝑙′, 𝑑,Θ) to be true iff 𝑙′ ∈
Θ(𝑙 [𝑑 ← ⊥]).
Definition 2.2.9 (HKR’s solvability property [9]). We define 𝑃HKR(𝑙, 𝑙′, 𝑑,Θ) to be true iff ∃𝑙′′ ∈ Θ(𝑙)
and that 𝑙′′[𝑑 ← ⊥] = 𝑙′

The two solvability properties mainly differ in how one considers the role of crashed processes. Recall
that a task description only stores pairs of matching vectors. In GMT’s version, we mask the original
input vector with ⊥ before determining whether the input-output pair is in the task description or not.
In HKR’s version, we check whether there exists some output vector, such that together with the input
vector, they form a pair in the task description, and also that output vector, with the local state of
crashed processes masked with ⊥, is equivalent to the real output vector.

2.3 GMT’s Model

We are now ready to precisely define GMT’s model in the fundamental theorem. This is also the most
general model we study in this report.
Definition 2.3.1 (GMT’s model [8]). GMT’s model is the non-layered model, where the possible
execution traces are taken from ΓFair.

2.4 Discussion

We discuss how GMT’s model, i.e. the non-layered model for ΓFair traces, aligns with the assumptions
we listed in subsection 2.1.

1. We have 𝑛 ∈ N processes in total, which is finite.

2. The sets of valid input and output values are fixed to be I and O, respectively, which are fixed to
be finite.

3. The non-layered model represents the shared-memory array from where processes write and
read.
A read action of the 𝑖-th process 𝑟𝑖 updates its local state according to the state of the entire
array and its original local state.
A write action of the 𝑖-th process 𝑤𝑖 updates the 𝑖-th cell of the memory array according to
its local state. Though the 𝑖-th cell of the global memory is passed as a argument to the write
function, the Global Memory Irrelevance condition ensures that the function does not depend
on the value in the global memory.
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4. A process participates in the protocol if it is given a valid input value from I. It does not
participate if it is given ⊥ for the initial local state. In which case, it acts as if it has committed,
so by the Write After Commit and Read After Commit conditions, it does not perform any
actions on the state of the system even if it has an action in the execution trace. Note that the set
of processes that receives ⊥ as the initial state is arbitrary.

5. Execution traces from ΓFair might contain 𝑑𝑖 actions which model the potential crash of a
process. In which case, all future actions of the process are omitted when simulating the effect
of the trace.

6. The trace property ΓFair allows arbitrary interleaving of actions by processes, thus giving us the
asynchronous system property.

7. The commit action is assisted by the Write After Commit and the Read After Commit property
as after a process changes its local state into a value in O⊥, its future actions does not affect the
state of the overall system.

8. We have the wait-free property of processes since for all infinite trace from ΓFair, there must
exists some finite prefix of the trace that satisfies the solvability property.

2.5 Preliminaries Summary

In this chapter, we presented the basic definitions of our framework, including the protocol, the trace,
and the shared-memory. We defined the semantics of the non-layered model with respect to the above
components and what it means for it to solve a distributed task with respect to a solvability property.
Lastly, we defined GMT’s model, and discussed how it reflects our original assumptions of a general
asynchronous distributed system.
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Chapter 3

Variants of the Base Model

In the previous chapter, we defined GMT’s model which is our general base model. However, we also
need to study other models that might have more interesting semantics and properties.

In this chapter, we study variations of our base models by changing various aspects of the system.
In particular, we examine various trace properties, a different memory model, and other definitions
of a protocol. We conclude this chapter by defining HKR’s model, which is a combination of these
variations.

3.1 Different Trace Properties

Recall that from subsection 2.2.3, our base model considers traces taken from the ΓFair trace property.
We now consider smaller, more specific trace properties.

3.1.1 Valid Traces

Since subsequent actions of the 𝑖-th process are ignored after a 𝑑𝑖 action (see subsection 2.2.4), it is
natural for us to only consider traces which do not have any actions of the 𝑖-th process after a 𝑑𝑖 action.
We call these traces valid.

Definition 3.1.1 (Valid traces). A valid trace 𝑇 is a trace where for all 𝑖 ∈ [𝑛], if proj𝑖 (𝑇) contains a
𝑑𝑖 action, it must be the last action in the projection. The trace property Γvalid contains all valid traces
𝑇 ∈ Γfair.

Remark. In GMT’s work, a valid trace is called a strong properly dying trace.

An immediate benefit of valid traces is that their semantics is more elegant. In particular we have:

J𝑑𝑖 · 𝑇K𝜋 (𝑙, 𝑚) = Jproj¬𝑖 (𝑇)K𝜋 (𝑙, 𝑚) = J𝑇K𝜋 (𝑙, 𝑚)

We can thus trivially prove the following nice compositionality property by induction.

Lemma 3.1.1 (Compositionality of valid traces). For all finite valid traces 𝑇1, 𝑇2, and protocols 𝜋, we
have

J𝑇1𝑇2K𝜋 = J𝑇2K𝜋 ◦ J𝑇1K𝜋
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Proof. Proved by induction on the length of 𝑇1. □

We prove that restricting to ΓValid traces does not affect task solvability with respect to our base model
in section 4.3.

3.1.2 Non-read-starting Traces

For each process, we might want to restrict its first action to be a write (given that it has not crashed).
We call traces with this restriction non-read-starting traces. This new class of traces is used to define
an intermediate model in the proof of the fundamental theorem.

Definition 3.1.2 (Non-read-starting traces). A non-read-starting trace𝑇 is a trace where for all 𝑖 ∈ [𝑛],
the first action of proj𝑖 (𝑇) is not 𝑟𝑖.

The trace property ΓNrs contains all non-read-starting traces 𝑇 ∈ ΓValid.

We prove that restricting to ΓNrs traces does not affect task solvability with respect to our base model
in section 4.4.

3.2 Alternating Traces

Note that in the previous trace properties, the exact sequence of actions executed by each process is
quite arbitrary. We now introduce some order in how processes execute reads and writes, in particular,
they must alternate between write and read actions. We call these traces alternating.

Definition 3.2.1 (Alternating traces). A trace 𝑇 is alternating if for each 𝑖 ∈ [𝑛], proj𝑖 (𝑇) is either a
prefix of or exactly the infinite trace 𝑤𝑖𝑟𝑖𝑤𝑖𝑟𝑖 . . . , or it is equals to 𝑇 ′ · 𝑑𝑖, where 𝑇 ′ is a finite prefix of
the above infinite trace.

The trace property ΓAlt contains all alternating traces 𝑇 such that for each 𝑖 ∈ [𝑛], proj𝑖 (𝑇) is exactly
the infinite trace 𝑤𝑖𝑟𝑖𝑤𝑖𝑟𝑖 . . . , or it is equals to 𝑇 ′ · 𝑑𝑖, where 𝑇 ′ is a finite prefix of the above infinite
trace.

We prove that restricting to ΓAlt traces does not affect task solvability with respect to our base model
in section 4.5.

3.3 Iterated Traces

In the previous defined trace properties, actions of various processes can be interleaved arbitrary,
to capture the notion of asynchronicity. In more advanced models, we might have some sort of
concurrency primitives, say a fence, that ensures that each process starts a new round of communication
only if all (alive) processes finish executing the previous round. The trace can thus be split into
intermediate segments, where in each segment, each process completes a round. We call these traces
iterated.

Definition 3.3.1 (Iterated traces). A numbered trace 𝑇 is iterated if for all actions 𝑎, 𝑏 ∈ {𝑟, 𝑤, 𝑑}, if
𝑎𝑥
𝑖
, 𝑏

𝑦

𝑗
are present in 𝑇 and 𝑥 < 𝑦, then 𝑎𝑥

𝑖
must appear before 𝑏

𝑦

𝑗
in the trace.

The trace property ΓIt contains all iterated traces 𝑇 ∈ ΓAlt.
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Restricting to ΓIt traces does not affect task solvability with respect to our base model. Instead, ΓIt is
relevant when we consider the layered memory model, which we introduce in section 3.4.

3.3.1 Immediate Snapshot Traces

In our base model, we consider writes and reads to be two separate atomic actions. We now consider a
slightly stronger communication primitive called an immediate snapshot. With an immediate snapshot,
once a process executes a write, it then executes a read immediately. One should however not consider
this write-read pair as a single atomic action. This is because a single immediate snapshot write-read
pair can interleave with other processes’ write-read pairs. By immediately, we mean that the actions
can be re-ordered as if the write-read pairs of certain processes are executed at the same time. We
call these traces immediate snapshot traces.

For example, the finite traces 𝑤0𝑟0𝑤1𝑟1𝑤2𝑟2, 𝑤0𝑤1𝑤2𝑟1𝑟2𝑟0, and 𝑤0𝑟0𝑤2𝑤1𝑟1𝑟2 are all immediate
snapshot traces. In particular, for the last trace, it has the effect of the 0-th process executing its
write-read pair first, and the 1-st and 2-nd process executing their write-read pairs at the same time
afterwards. As a non-example, the finite trace 𝑤0𝑤1𝑟1𝑤2𝑟2𝑟0 is not immediate snapshot, since the
write-read pair of the 0-th process is not immediate, spanning over the write-read pair of the 1-st and
2-nd processes, whose write-read pairs do not have the effect of happening in the same time.

Defining an immediate snapshot trace is not straightforward. We do so by first defining a function,
updated:

Definition 3.3.2 (The updated function). We define updated as the function that takes in a finite
alternating trace 𝑇 and returns a subset of [𝑛] defined by induction on the length of 𝑇 as follows:

updated(𝜖) = ∅
updated(𝑇𝑤𝑖) = updated(𝑇) ∪ {𝑖}
updated(𝑇𝑟𝑖) = updated(𝑇) \ {𝑖}
updated(𝑇𝑑𝑖) = updated(𝑇) \ {𝑖}

Definition 3.3.3 (Immediate snapshot traces). A trace 𝑇 is immediate snapshot if for every prefix of
the form 𝑇 ′𝑟𝑖𝑇 ′′𝑤 𝑗 where 𝑇 ′′ only contains actions of the form 𝑑𝑘 , updated(𝑇 ′𝑟𝑖𝑇 ′′) = ∅.

The trace property ΓIt+IS contains all immediate snapshot traces 𝑇 ∈ ΓIt.

Similarly to ΓIt, it is not the case that restricting to ΓIt+IS traces does not affect task solvability with
respect to our base model. The trace property ΓIt+IS instead appears when we consider the layered
memory model (see section 3.4).

Note the above trace properties form a total order ordered by set inclusion as follows:

ΓIt+IS ⊆ ΓIt ⊆ ΓAlt ⊆ ΓNrs ⊆ ΓValid ⊆ ΓFair

This total order is useful because if we can solve a task decision for a certain trace property, we can
solve the same task decision for a smaller subset of the trace property. This idea is introduced formally
in section 4.2.

3.3.2 Bounded Traces

In all the above trace properties, the traces are all infinite (unless all processes crash in the trace). One
may find it more natural to only consider traces where each process only executes a finite number of
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steps. We call these traces bounded. We consider three variants of bounded trace properties, indexed
by 𝑘 ∈ N representing the number of write-read pairs each non-dying process performs.

Definition 3.3.4 (Bounded traces). For all 𝑘 ∈ N, the trace property Γ𝑘-Alt contains all alternating
numbered traces𝑇 such that for each 𝑖 ∈ [𝑛], proj𝑖 (𝑇) is exactly the finite trace 𝑤0

𝑖
𝑟0
𝑖
𝑤1
𝑖
𝑟1
𝑖
. . . 𝑤𝑘−1

𝑖
𝑟 𝑘−1
𝑖

,
or it is equals to 𝑇 ′ · 𝑑𝑚

𝑖
for some 𝑚 ∈ N, where 𝑇 ′ is a finite prefix of the above finite trace.

For all 𝑘 ∈ N, the trace property Γ𝑘-It contains all iterated traces 𝑇 ∈ Γ𝑘-Alt.

For all 𝑘 ∈ N, the trace property Γ𝑘-It+IS contains all immediate snapshot traces 𝑇 ∈ Γ𝑘-It.

Similar to the total order we saw for non-bounded trace properties, for all 𝑘 ∈ N, we have the following
total order for the bounded trace properties ordered by set inclusion:

Γ𝑘-It+IS ⊆ Γ𝑘-It ⊆ Γ𝑘-Alt

3.4 Layered Model

Recall that from subsection 2.2.4, we use a non-layered model, i.e. a single memory block for processes
to read from and write onto. In HKR’s model (see section 3.6), we use a more interesting memory
model called the layered model. Instead of a single memory array, the layered model has an infinite
number of memory arrays. For the 𝑖-th write-read pair of a process, it writes and reads from the 𝑖-th
layer of the layered memory. This notion is captured formally by the following definition:

Definition 3.4.1 (Semantics of the layered model). Given protocol (V, 𝜋) and a finite numbered trace
𝑇 , we define the semantics of the layered model JJ𝑇KK𝜋 : (V𝑛 × (N → V𝑛)) → V𝑛 × (N → V𝑛)
inductively on the length of 𝑇 :

JJ𝑤𝑝

𝑖
· 𝑇KK𝜋 (𝑙, 𝑚) = JJ𝑇KK𝜋 (𝑙, 𝑚 [(𝑝, 𝑖) ← 𝜋𝑤𝑖

(𝑙𝑖, 𝑚(𝑝) [𝑖])])
JJ𝑟 𝑝

𝑖
· 𝑇KK𝜋 (𝑙, 𝑚) = JJ𝑇KK𝜋 (𝑙 [𝑖 ← 𝜋𝑟𝑖 (𝑙𝑖, 𝑚(𝑝))], 𝑚)

JJ𝑑𝑝

𝑖
· 𝑇KK𝜋 (𝑙, 𝑚) = JJproj¬𝑖 (𝑇)KK𝜋 (𝑙, 𝑚)
JJ𝜖KK𝜋 (𝑙, 𝑚) = (𝑙, 𝑚)

The layered model is the reason why we might consider iterated traces. Intuitively, the label number of
an action represents the layer a process writes into or reads from. Though we cannot have a memory
model with an infinite number of layers in the physical world, restricting to iterated traces does not
affect task solvability when using a layered model (see section 4.8).

The definition of task solvability for the layered model is similar to the non-layered one (see subsec-
tion 2.2.5):

Definition 3.4.2 (𝑃-Solvable under the layered model). We say a protocol 𝜋 𝑃-solves a task description
Θ under the layered model for Γ traces if for all 𝑙 ∈ I𝑛⊥ and all numbered traces 𝑇 ∈ Γ, there exists a
finite prefix 𝑇 ′ of 𝑇 such that 𝑃(𝑙, fst(JJ𝑇 ′KK𝜋 (𝑙, _𝑘.⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ).

Though a different model, many results we have for the non-layered model still hold similarly for the
layered one. We list them here below:

Lemma 3.4.1 (Committed value lemma for layered models). For all protocols (V, 𝜋), 𝑙 ∈ V𝑛, 𝑚 ∈ N→
V𝑛, finite numbered trace 𝑇∈ A∗+𝜔, and 𝑖 ∈ [𝑛], if we have 𝑙 [𝑖] ∈ O⊥, then fst(JJ𝑇KK𝜋 (𝑙, 𝑚)) [𝑖] = 𝑙 [𝑖].
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Proof. Similar to lemma 2.2.1. □

Lemma 3.4.2 (Constant local memory lemma for layered models). For all finite traces 𝑇 , protocols
(V, 𝜋), 𝑘 ∈ N and 𝑖 ∈ [𝑛], if 𝑇 does not contain 𝑟𝑖, for all 𝑙 ∈ V𝑛, 𝑚 ∈ N→ V𝑛, fst(JJ𝑇KK𝜋 (𝑙, 𝑚)) [𝑖] =
𝑙 [𝑖].

Proof. Similar to lemma 2.2.2. □

Lemma 3.4.3 (Constant global memory lemma for layered models). For all finite numbered traces
𝑇 , protocols (V, 𝜋), 𝑘 ∈ N and 𝑖 ∈ [𝑛], if 𝑇 does not contain 𝑤𝑘

𝑖
, for all 𝑙 ∈ V𝑛, 𝑚 ∈ N → V𝑛,

snd(JJ𝑇KK𝜋 (𝑙, 𝑚)) [𝑘] [𝑖] = 𝑚 [𝑘] [𝑖].

Proof. Similar to lemma 2.2.3. □

Lemma 3.4.4 (Trace extension lemma for layered models). For all distributed tasks Θ, proto-
cols (V, 𝜋), 𝑙 ∈ V𝑛, traces 𝑇 , solvability properties 𝑃, if 𝑃(𝑙, fst(JJ𝑇 ′KK𝜋 (𝑙, _𝑘.⊥𝑛)) [dead(𝑇) ←
⊥], dead(𝑇),Θ) for some finite prefix 𝑇 ′ of 𝑇 , for all finite prefixes 𝑇 ′′ of 𝑇 satisfying 𝑇 ′ ≤ 𝑇 ′′, then
𝑃(𝑙, fst(JJ𝑇 ′′KK𝜋 (𝑙, _𝑘.⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ).

Proof. Similar to lemma 2.2.4. □

Lemma 3.4.5 (Compositionality of valid traces for layered models). For all finite valid numbered
traces 𝑇1, 𝑇2 and protocols 𝜋, we have

JJ𝑇1𝑇2KK𝜋 = JJ𝑇2KK𝜋 ◦ JJ𝑇1KK𝜋

Proof. Similar to lemma 3.1.1. □

3.5 Different Protocols

Recall that from subsection 2.2.2, a protocol consists of two families of functions for the write and
read actions of processes. In this section, we consider variations of the protocol, by adding more
conditions, or changing its type slightly.

3.5.1 Full-disclosure Protocols

Our first class of protocols is called the full-disclosure protocols. A non-committed process in a
full-disclosure protocol writes the value of its local state directly into its global memory cell. This is
captured by the following definition:

Definition 3.5.1 (Full-disclosure protocol). A protocol (V, 𝜋) is a full-disclosure protocol if 𝜋𝑤𝑖
(𝑥, 𝑦) =

𝑥 for all 𝑥 ∈ V \ O⊥, 𝑦 ∈ V.

In fact, restricting to full-disclosure protocol does not affect task solvability with respect to the base
model. We can see this from the following proposition:

Proposition 3.5.1 (Full-disclosure proposition). For any distributed task Θ, trace property Γ, and
solvability property 𝑃, Θ is 𝑃-solvable under the non-layered model for Γ traces if and only if there
exists a full-disclosure protocol 𝜋 that 𝑃-solves Θ under the non-layered model for Γ traces.
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Proof. (⇒) Assume the protocol (V, 𝜋) 𝑃-solves Θ under the non-layered model for Γ traces. We
define the full-disclosure protocol (V, 𝜋′) as follows:

𝜋′𝑤𝑖
(𝑥, 𝑦) =

{
𝑥 if 𝑥 ∉ O⊥

𝑦 otherwise
𝜋′𝑟𝑖 (𝑥, 𝑚) = 𝜋𝑟𝑖 (𝑥, (𝜋𝑤0 (𝑚0,⊥), ..., 𝜋𝑤𝑛−1 (𝑚𝑛−1,⊥)))

It is trivial to see that 𝜋′ is a well-defined protocol. We claim that 𝜋′ 𝑃-solves Θ under the non-layered
model for Γ traces. The full proof can be found in Appendix B.

(⇐) This direction is trivial because any full-disclosure protocol is also a protocol. □

The above result is used within one of the reduction proofs of the fundamental theorem (see section 4.4).

3.5.2 𝛿-protocols

We now define a different kind of protocol called 𝛿-protocols1. Not only would this help us produce
simpler, modular proofs for some algorithms, this is also an important component of HKR’s model
(see section 3.6).

Definition 3.5.2 (𝛿-protocol). A 𝛿-protocol is a tuple (V, 𝜙), where V is a superset of I ∪ O ∪ {⊥},
and 𝜙 consists of three families of functions:

𝜙𝑤𝑖
: V→ V, 𝜙𝑟𝑖 : V × V𝑛 → V, and 𝜙𝛿𝑖 : V→ V

indexed by 𝑖 ∈ [𝑛], satisfying the following three conditions:

𝜙𝑤𝑖
(⊥) = ⊥ ∀𝑖 ∈ [𝑛] (Write strictness)

𝜙𝑟𝑖 (⊥, 𝑚) = ⊥ ∀𝑚 ∈ V𝑛,∀𝑖 ∈ [𝑛] (Read strictness)
𝜙𝛿𝑖 (⊥) = ⊥ ∀𝑖 ∈ [𝑛] (Decision strictness)

The 𝛿-protocol is similar to the normal protocol in that it still has the write and read functions for each
process. One main difference is that the write function only depends on its local state, in which case,
we can completely remove the Write After Commit condition. Instead, the conditions are replaced
with strictness conditions. These are there to ensure that when a process is given ⊥ as an input, we
want it to not have any effect on the system as we consider it to be a non-participating process.

Definition 3.5.3 (Semantics of 𝛿-protocols). Given 𝛿-protocol (V, 𝜙) and a finite trace𝑇 , its semantics
in the non-layered and the layered model is the same as the normal protocol except for the write actions:

J𝑤𝑖 · 𝑇K𝜙 (𝑙, 𝑚) = J𝑇K𝜙 (𝑙, 𝑚 [𝑖 ← 𝜙𝑤𝑖
(𝑙𝑖)])

JJ𝑤𝑝

𝑖
· 𝑇KK𝜙 (𝑙, 𝑚) = JJ𝑇KK𝜙 (𝑙, 𝑚 [(𝑝, 𝑖) ← 𝜙𝑤𝑖

(𝑙𝑖)])

Given 𝑙 ∈ V𝑛, we write 𝜙𝛿 (𝑙) as shorthand for (𝜙𝛿0 (𝑙0), . . . , 𝜙𝛿𝑛−1 (𝑙𝑛−1)).
1 We explicitly state the term "𝛿-protocol" to refer to this special type of protocol. Otherwise, we use the term "protocol"

to refer to the normal protocol in subsection 2.2.2.
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Another difference of the 𝛿-protocol is that it has an extra family of functions 𝜙𝛿𝑖 indexed by 𝑖 ∈ [𝑛].
We call these decision functions. Informally, a distributed system running a 𝛿-protocol has two stages.
In the first stage, the processes communicate with each other via the shared memory, just like a
normal protocol. In the second stage after exchanging information, the processes decide and commit
by applying their decision function onto their local state. This notion is captured by the following
definition of 𝑃-solvability for 𝛿-protocols:

Definition 3.5.4 (𝑃-Solvablity of 𝛿-protocols). We say a 𝛿-protocol 𝜙 𝑃-solves a decision taskΘ under
the non-layered model for Γ traces, where Γ ⊆ Γ𝑘-Alt for some 𝑘 ∈ N, if for all 𝑙 ∈ I𝑛⊥ and all traces
𝑇 ∈ Γ, we have 𝑃(𝑙, 𝜙𝛿 (fst(J𝑇K𝜙 (𝑙,⊥𝑛))) [dead(𝑇) ← ⊥], dead(𝑇),Θ).

Similarly, 𝜙 solves a decision task Θ under the layered model for Γ traces, where Γ ⊆ Γ𝑘-Alt for
some 𝑘 ∈ N, if for all 𝑙 ∈ I𝑛⊥ and all traces 𝑇 ∈ Γ, we have 𝑃(𝑙, 𝜙𝛿 (fst(JJ𝑇KK𝜙 (𝑙, _𝑘.⊥𝑛))) [dead(𝑇) ←
⊥], dead(𝑇),Θ).

Note that task solvability of 𝛿-protocols only makes sense for bounded trace properties, because we
want our first communication stage to be finite.

Though seemingly weaker than a normal protocol, we later show that a 𝛿-protocol is as powerful as a
normal protocol for finite, alternating traces. Both directions of this result are reduction steps in the
proof of our fundamental theorem and can be found in section 4.9.

Note that despite having a different type and a set of different conditions, various results on the
semantics of a normal protocol still hold for the 𝛿-protocol, e.g. the Constant local memory lemma
(see subsection 2.2.4).

3.5.3 Full-information 𝛿-Protocols

We now consider a class of 𝛿-protocols with extra conditions, called full-information 𝛿-protocols.
Similar to full-disclosure protocols (see subsection 3.5.1), in a full-information 𝛿-protocol, processes
write their entire local state into the global memory cell. In addition, during a read, processes condense
the entire array block into a single value to store it as the local state. This notion is captured by the
definition below:

Definition 3.5.5 (Full-information 𝛿-protocol). A 𝛿-protocol (V, 𝜙) is a full-information 𝛿-protocol if
V is a set freely generated by a 𝑛-ary operator (_, . . . , _) on some superset of I∪O⊥ and the following
two conditions are satisfied2:

𝜙𝑤𝑖
(𝑥) = 𝑥 ∀𝑖 ∈ [𝑛], 𝑥 ∈ V (Full-information write)

𝜙𝑟𝑖 (𝑥, 𝑚) = (𝑚0, . . . , 𝑚𝑛−1) ∀𝑖 ∈ [𝑛], 𝑥 ∈ V \ {⊥}, 𝑚 ∈ V𝑛 (Full-information read)

We later show that if we can solve a task with a 𝛿-protocol, we can always find a full-information 𝛿-
protocol to solve the same distributed task. This result is a component of the proof of the fundamental
theorem and can be found in section 4.11.
2 Note we are overloading the parenthesis () to represent two possible things: a vector of 𝑛 V values, or a single V value

of the 𝑛-ary tuple. Since they are isomorphic to each other, we refer to them interchangeably. A similar situation occurs
in the proof of the Full-information 𝛿-protocol proposition (see section 4.11) and the Non-layered ΓAlt to layered ΓIt
proposition (see section 4.13).
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3.6 HKR’s Model

After defining several variants of our original base model, we are now able to precisely describe
HKR’s model. HKR’s model can be considered to be one of the most specific models in this report,
and is used as the model in the Asynchronous Computability Theorem [10] (see subsection 5.2.3).

Definition 3.6.1 (HKR’s model [9]). HKR’s model is the layered model, where possible execution
traces are taken from Γ𝑘-It+IS for some 𝑘 ∈ N, and executed by some full-information 𝛿-protocols.

3.7 Variants of the Base Model Summary

In this chapter, we presented variants of the base model. We first studied various trace properties each
with increasing number of conditions on its underlying traces. We then defined the layered memory
model and discussed how it is different from the non-layered one. We also examined variations of
the original protocols, either by adding more conditions or by slightly changing their definition. We
finally conclude by defining HKR’s model, which is considered to be the most specific model in the
report.

Here, we successfully accomplished our first task, i.e. present a unified mathematical formal framework
of asynchronous distributed systems, and define both GMT’s and HKR’s model. In the rest of the
report, we focus on our second task, i.e. we now prove the Fundamental Theorem of Asynchronous
Distributed Models, introduced in section 1.2.
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Chapter 4

Fundamental Theorem

Now that we defined GMT’s and HKR’s models (see sections 2.3 and 3.6, respectively), we can unfold
the definitions and present our fundamental theorem in full:

Theorem 4.0.1 (Fundamental Theorem of Asynchronous Distributed Models). Given task description
Θ and solvability property 𝑃, Θ is 𝑃-solvable under the non-layered model for ΓFair traces, iff there
exists a full-information 𝛿-protocol that 𝑃-solves Θ under the layered model for Γ𝑘-It+IS traces for some
𝑘 ∈ N.

We start this chapter by providing an overview of the overall proof. Each subsequent section then
contains a reduction algorithm from one model to another. This graph of models and reduction proofs
containing both GMT’s and HKR’s model (see Figure 4.1), has a loop, and thus completes the proof1.

4.1 Overview of the Proof

Before we present a high-level overview of the proof, we highlight aspects of the theorem statement
that make the proof difficult.

1. Note that the theorem holds for all task descriptions Θ and solvability properties 𝑃. Conse-
quently, the proofs must be agnostic to both variables.

2. Traces from GMT’s model are taken from ΓFair, an unbounded trace property. Traces from
HKR’s model are instead taken from Γ𝑘-It+IS for some 𝑘 ∈ N fixed in advance, a bounded trace
property. It is not obvious as to why solving a task with an unbounded trace property implies
we can solve it with a bounded one, or vice versa.

3. GMT’s model is a non-layered one and HKR’s model is a layered one. It is not obvious as to
why one model can be considered as strong as the other.

4. Traces from GMT’s model are not necessarily immediate snapshot. Traces from HKR’s model
are all immediate snapshot. It is not trivial to prove that traces with the immediate snapshot
property are as powerful as non-immediate snapshot ones.

With these difficulties in mind, we now present an overview of the proof of the Fundamental Theorem
of Asynchronous Distributed Models:
1 We encourage our readers to pause here, go away, and try proving the theorem on their own before reading on :)
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Proof outline. The reduction steps from GMT’s model to HKR’s model, and vice versa, are presented
in Figure 4.1, where each arrow is labelled with the corresponding section number of the proof. An
arrow from model A to model B means that for any distributed task Θ and solvability property 𝑃, if
model A can 𝑃-solve Θ, then so can model B.

ΓFair

Non-layered

Layered

ΓAlt

ΓIt

Unbounded Bounded

ΓIt+IS Γ𝑘-It+IS

Γ𝑘-It+IS
(𝛿-protocol)

Γ𝑘-It+IS
(Full-info 𝛿-protocol)

Γ𝑘-It Γ𝑘-Alt

Γ𝑘-Alt

ΓNrsΓValid

4.2

4.13

4.2

4.12

4.9

4.11

4.9

4.10

4.8

4.74.6

4.5

4.44.3

Figure 4.1: Proof of the Fundamental Theorem of Asynchronous Distributed Models

□

Remark. In GMT’s paper, there exists the notion of a well-bracketed trace, which is similar to an
alternating trace. In Appendix F, we study how alternating traces are similar to well-bracketed traces.

Here, we would like to highlight the fact that most of the above reduction steps follow a similar proof
structure. Suppose we want to prove that if model A 𝑃-solves Θ, then model B also 𝑃-solves Θ. A
reduction proof of that normally goes as follows:

1. Assume a (𝛿-)protocol 𝛼 for model A that 𝑃-solves Θ.

2. Construct a (𝛿-)protocol 𝛽 for model B from 𝛼, which we claim 𝑃-solves Θ with model B.

3. Consider an arbitrary trace execution 𝑇B allowed for model B.

4. According to 𝑇B, find a trace execution 𝑇A allowed for model A.

5. By assumption, there exists some prefix trace 𝑇 ′
A

of 𝑇A such that the semantics of 𝛼 for model
A after executing 𝑇 ′

A
satisfies 𝑃.

6. Show that this means that there exists some prefix trace 𝑇 ′B of 𝑇B such that the semantics of 𝛽
for model B after executing 𝑇 ′B satisfies 𝑃.

Most reduction proofs presented follow this structure, possibly with some slight deviations. The one
reduction step that does not follow this style is that of the Layered ΓIt+IS to layered Γ𝑘-It+IS proposition
(see section 4.12), where we use an interesting non-constructive proof by contradiction.
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4.2 Trace Subset Proposition

We show that if we can solve a distributed task for some trace property, then we can also solve the
same distributed task for a subset of that trace property.

We present this relatively trivial proposition here for two reasons. Firstly, this is the proof of two
reduction steps, namely, from the non-layered model for ΓFair traces to the non-layered model for ΓAlt
traces, and from the layered model for ΓIt traces to the layered model for ΓIt+IS. Secondly, this proof
presents a neat example of the proof outline highlighted in section 4.1 (where we choose 𝛽 = 𝛼 and
𝑇A = 𝑇B).

Proposition 4.2.1 (Trace subset proposition). Given task description Θ, solvability property 𝑃, and
trace properties Γ, Γ′ with Γ′ ⊆ Γ, if Θ is 𝑃-solvable under the non-layered model for Γ traces, then Θ

is also 𝑃-solvable under the non-layered model for Γ′ traces. This proposition also holds if we replace
the non-layered model with a layered one.

Proof. By assumption, there exists a protocol 𝜋 that 𝑃-solves Θ under the non-layered model for Γ
traces. We claim that 𝜋 also 𝑃-solves Θ under the non-layered model for Γ′ traces.

Consider arbitrary 𝑙 ∈ I𝑛⊥ and trace 𝑇 ∈ Γ′. Since Γ ⊆ Γ′, we also have 𝑇 ∈ Γ. By definition of
𝑃-solvability, there exists a finite prefix 𝑇 ′ of T such that

𝑃(𝑙, fst(J𝑇 ′K𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ)

The proof for the layered model is similar. □

4.3 Non-layered ΓValid to Non-layered ΓFair Proposition

We show that solving a distributed task with the non-layered model for ΓValid implies that we can solve
the same task with the non-layered model for ΓFair traces.

This proposition should not come as a surprise. Once a process dies, any of its subsequent actions in
the trace are removed and it has no subsequent effect.

The difficulty in this proof lies in its constructive nature, where we have to precisely give an execution
point in the fair trace that relates to the one we found in the valid trace which solves the task.

Proposition 4.3.1 (Non-layered ΓValid to non-layered ΓFair proposition). Given task description Θ and
solvability property 𝑃, if Θ is 𝑃-solvable under the non-layered model for ΓValid traces, then Θ is also
𝑃-solvable under the non-layered model for ΓFair traces.

Proof. By assumption, there exists a protocol 𝜋 that 𝑃-solves Θ under the non-layered model for ΓValid
traces. We claim that 𝜋 also 𝑃-solves Θ under the non-layered model for ΓFair traces.

Consider the following rewriting system with a family of rules (𝑅𝑖)𝑖 for each 𝑖 ∈ [𝑛]:

𝑅𝑖 : 𝑇𝑎𝑑𝑖𝑇𝑏 ⇒ 𝑇𝑎𝑑𝑖proj¬𝑖 (𝑇𝑏) where 𝑇𝑎 does not contain 𝑑𝑖

Lemma 4.3.2. The above rewriting system is terminating on all traces.

This is obvious since the rule 𝑅𝑖 removes all actions of the 𝑖-th process after the first 𝑑𝑖 actions if it
exists, we can only apply it once. Each 𝑅𝑖 also affects its own 𝑖-projection.
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Lemma 4.3.3. For all 𝑖 ∈ [𝑛], the rewriting system only containing 𝑅𝑖 is confluent on all traces.

This is obvious since we can perform the rewrite on at most one place in the trace. If there are multiple
𝑑𝑖 actions, we can only apply it in the first one.

Let 𝑓 be the function which takes in a trace, and returns the trace after repeatedly applying 𝑅𝑖 until it
is irreducible in order of 𝑖.

Lemma 4.3.4. For all traces 𝑇 , dead( 𝑓 (𝑇)) = dead(𝑇)

This is obvious because we only remove actions in the rewriting rules, and the number of 𝑑𝑖 actions
never go to zero if there is at least one in the trace.

Lemma 4.3.5. For all traces 𝑇 ∈ ΓFair, 𝑓 (𝑇) ∈ ΓValid.

Note first that after rewriting, 𝑓 (𝑇) must be in ΓFair, by induction on number of rewrites. By
contradiction if 𝑓 (𝑇) is not valid, we would thus be able to perform another rewrite thus contradiction
the fact that 𝑓 (𝑇) is irreducible.

Lemma 4.3.6. For all finite prefixes 𝑇 ′ of 𝑇 , J𝑇 ′K𝜋 = J 𝑓 (𝑇 ′)K𝜋.

This can be proven by strong induction on the length of 𝑇 ′.

Lemma 4.3.7. For all 𝑇,𝑇 ′ ∈ ΓFair, if 𝑇 ≤ 𝑇 ′, we have 𝑓 (𝑇) ≤ 𝑓 (𝑇 ′).

This can be shown by observing that if we can apply 𝑅𝑖 on 𝑇 , we can also apply it on 𝑇 ′ and we must
have 𝑅𝑖 (𝑇) ≤ 𝑅𝑖 (𝑇 ′). Moreover if we can only apply 𝑅𝑖 on 𝑇 ′ but not 𝑇 , we must have 𝑇 ≤ 𝑅𝑖 (𝑇 ′).
Lemma 4.3.8. For all countable increasing sequences (𝑇𝑖)𝑖 under the prefix preorder ≤, where

⊔
𝑇𝑖 =

𝑇 , we have
⊔

𝑖 𝑓 (𝑇𝑖) = 𝑓 (⊔𝑖 𝑇𝑖).

This can be shown with a similar argument as lemma 4.3.7.

Consider arbitrary 𝑙 ∈ I𝑛⊥ and trace 𝑇 ∈ ΓFair. We have 𝑓 (𝑇) ∈ ΓValid. By definition of 𝑃-solvability,
there exists a prefix 𝑇 ′ of 𝑓 (𝑇) such that 𝑃(𝑙, fst(J𝑇 ′K𝜋 (𝑙,⊥𝑛)) [dead( 𝑓 (𝑇)) ← ⊥], dead( 𝑓 (𝑇)),Θ).
Define 𝑇 as

⊔
𝑖 𝑇𝑖 for some increasing sequence (𝑇𝑖)𝑖, which is always possible. Since we have

𝑇 ′

≤ 𝑓 (𝑇) (definition)

= 𝑓 (
⊔
𝑖

𝑇𝑖) (definition)

=
⊔
𝑖

𝑓 (𝑇𝑖) (lemma 4.3.8)

there must exists some 𝑘 such that 𝑇 ′ ≤ 𝑓 (𝑇𝑘 ).

By the Trace extension lemma, we have 𝑃(𝑙, fst(J 𝑓 (𝑇𝑘 )K𝜋 (𝑙,⊥𝑛)) [dead( 𝑓 (𝑇)) ← ⊥], dead( 𝑓 (𝑇)),Θ).
By simple substitution, we also have 𝑃(𝑙, fst(J𝑇𝑘K𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ), thus com-
pleting the proof.

□
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4.4 Non-layered ΓNrs to Non-layered ΓValid Proposition

We show that solving a distributed task with the non-layered model for ΓNrs traces implies that we can
solve the same task with the non-layered model for ΓValid traces.

The key idea is that our newly constructed protocol lets processes keep track on whether a write has
been performed by themselves yet. If not, any read it performs does not change its local state. Note
that this proof uses the Full-disclosure proposition (see subsection 3.5.1).

Proposition 4.4.1 (Non-layered ΓNrs to non-layered ΓValid proposition). Given task description Θ and
solvability property 𝑃, if Θ is 𝑃-solvable under the non-layered model for ΓNrs traces, then Θ is also
𝑃-solvable under the non-layered model for ΓValid traces.

Proof. Suppose Θ is 𝑃-solvable under the non-layered model for ΓNrs traces. By the Full-disclosure
proposition (see subsection 3.5.1), there exists a full-disclosure protocol (V, 𝜋) that 𝑃-solves Θ under
the non-layered model for ΓNrs traces.

We construct a protocol (V, 𝜋′) as follows:

𝜋′𝑤𝑖
(𝑥, 𝑦) = 𝜋𝑤𝑖

(𝑥, 𝑦)

𝜋′𝑟𝑖 (𝑥, 𝑚) =
{
𝑥 if 𝑥 ∈ O⊥ or 𝑚𝑖 = ⊥
𝜋𝑟𝑖 (𝑥, 𝑚) otherwise

We claim that (V, 𝜋′) 𝑃-solves Θ under the non-layered model for ΓValid traces. The full proof can be
found in Appendix C.

□

4.5 Non-layered ΓAlt to Non-layered ΓNrs Proposition

We show that solving a distributed task with the non-layered model for ΓAlt traces implies that we can
solve the same task with the non-layered model for ΓNrs.

This proposition is quite intuitive to understand. For each process, it does not provide additional
information to others by writing multiple times consecutively. Similarly, it should not gain much
by choosing to read multiple times consecutively. Thus, consecutive write/read actions of the same
process can be compressed into one. The tediousness of the proof is a consequence of constructing
the required protocol explicitly and proving its property.

Proposition 4.5.1 (Non-layered ΓAlt to non-layered ΓNrs proposition). Given task description Θ and
solvability property 𝑃, ifΘ is 𝑃-solvable under the non-layered model for ΓAlt, thenΘ is also 𝑃-solvable
under the non-layered model for ΓNrs traces.

Proof. Assume the protocol (V, 𝜋) 𝑃-solves Θ under the non-layered model for ΓAlt traces. We define
V′ to be the set freely generated by the binary operator ⟨_, _⟩ on V ∪ N.

We define the function ver: V′→ V′ as follows:

ver(𝑥) =
{
𝑧 if 𝑥 = ⟨𝑦, 𝑧⟩
0 otherwise
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We define the function val: V′→ V′ as follows:

val(𝑥) =
{
𝑦 if 𝑥 = ⟨𝑦, 𝑧⟩
𝑥 otherwise

We also define the function map: ((V′ → V′) × V′𝑛) → V′𝑛 as the function that applies the first
argument to every element of the second argument, i.e. an 𝑛-tuple.

We define the protocol (V′, 𝜋′) as follows:

𝜋′𝑤𝑖
(𝑥, 𝑦) =

{
𝑦 if 𝑥 ∈ O⊥
⟨𝜋𝑤𝑖
(val(𝑥),⊥), ver(𝑥)⟩ otherwise

𝜋′𝑟𝑖 (𝑥, 𝑚) =



𝑥 if 𝑥 ∈ O⊥
𝑥 if ver(𝑚 [𝑖])≠ver(x)
𝜋𝑟𝑖 (val(𝑥),map(val, 𝑚)) if 𝜋𝑟𝑖 (val(𝑥),map(val, 𝑚)) ∈ O⊥
⟨𝜋𝑟𝑖 (val(𝑥),map(val, 𝑚)),
val(𝑥) + 1⟩ otherwise

otherwise

We claim that (V′, 𝜋′) 𝑃-solves Θ under the non-layered model for ΓNrs traces. The full proof can be
found in Appendix D. □

4.6 Non-layered Γ𝑘-Alt to Non-layered ΓAlt Proposition

We show that solving a distributed task with the non-layered model for Γ𝑘-Alt traces for some 𝑘 ∈ N
implies that we can solve the same task with the non-layered model for ΓAlt traces.

The intuition behind this proof is that starting from any non-bounded alternating trace, we can
repeatedly make use of the 𝑃-solvability definition to find a prefix of the trace where a process commits
upon executing 𝑘 rounds, so we can remove all subsequent actions of that process. Eventually we end
up for a trace belonging to the bounded trace property. The main difficulty in this proof is defining
explicitly how the bounded trace is constructed from the infinite trace.

Proposition 4.6.1 (Non-layered Γ𝑘-Alt to non-layered ΓAlt proposition). Given task description Θ and
solvability property 𝑃, if Θ is 𝑃-solvable under the non-layered model for Γ𝑘-Alt traces for some 𝑘 ∈ N,
then Θ is also 𝑃-solvable under the non-layered model for ΓAlt traces.

Proof. Assume the protocol (V, 𝜋) 𝑃-solves Θ under the non-layered model for Γ𝑘-Alt traces for some
𝑘 ∈ N. We claim that (V, 𝜋) also 𝑃-solves ΓAlt.

Consider arbitrary trace 𝑇 ∈ ΓAlt. Since [𝑛] is a finite set, one can find a prefix 𝑇 ′ of 𝑇 such that for all
𝑖 ∈ [𝑛], either 𝑤0

𝑖
𝑟0
𝑖
. . . 𝑤𝑘−1

𝑖
𝑟 𝑘−1
𝑖

is a prefix of proj𝑖 (𝑇 ′) or proj𝑖 (𝑇 ′) = 𝑇 ′′𝑑𝑖 where 𝑇 ′′ is some prefix
of 𝑤0

𝑖
𝑟0
𝑖
. . . 𝑤𝑘−1

𝑖
𝑟 𝑘−1
𝑖

. It suffices to prove that for all 𝑙 ∈ I𝑛⊥, we have 𝑃(𝑙, fst(J𝑇 ′K𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ←
⊥], dead(𝑇),Θ).

We now obtain a permutation (𝑝𝑖)𝑖 of 0, . . . , 𝑛 − 1, such that the 𝑟 𝑘−1
𝑝𝑖

or 𝑑𝑝𝑖 action (whichever is
earlier) appears before the 𝑟 𝑘−1

𝑝 𝑗
or 𝑑𝑝 𝑗

action in 𝑇 ′ (whichever is earlier) for all 𝑖 < 𝑗 . Without loss of
generality, we can let 𝑝𝑖 = 𝑖.

We define a family of rewriting rules 𝑅𝑖 indexed by 𝑖 ∈ [𝑛]:

𝑅𝑖 : 𝑇𝑎𝑟 𝑘−1
𝑖 𝑇𝑏𝑥𝑖𝑇𝑐 ⇒ 𝑇𝑎𝑟

𝑘−1
𝑖 𝑇𝑏𝑇𝑐 where 𝑇𝑏 does not contain A𝑖 and 𝑥𝑖 ∈ A𝑖
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Lemma 4.6.2. For all 𝑖 ∈ [𝑛], 𝑅𝑖 is confluent and terminating for all finite traces.

We can see that 𝑅𝑖 is confluent for all 𝑖 ∈ [𝑛] because there is at most one place we can apply this rule.
It is obviously terminating because applying 𝑅𝑖 removes an action from the finite trace.

Let 𝑓𝑖 be the function that takes in a finite trace and returns the trace that is rewritten by 𝑅𝑖 if possible.

Lemma 4.6.3. For all 𝑖 ∈ [𝑛 + 1], the trace 𝑈 = ( 𝑓𝑖−1 ◦ · · · ◦ 𝑓0) (𝑇 ′) has the following properties:

1. For all 𝑗 ∈ [𝑖], fst(J𝑈K𝜋 (𝑙,⊥𝑛)) [ 𝑗] = fst(J𝑇 ′K𝜋 (𝑙,⊥𝑛) [ 𝑗]

2. For all 𝑗 ∈ [𝑖], proj 𝑗 (𝑈) = 𝑤0
𝑗
𝑟0
𝑗
. . . 𝑤𝑘−1

𝑗
𝑟 𝑘−1
𝑗

or𝑈′𝑑 𝑗 where𝑈′ is a prefix of 𝑤0
𝑗
𝑟0
𝑗
. . . 𝑤𝑘−1

𝑗
𝑟 𝑘−1
𝑗

.

3. dead(𝑈) ⊆ dead(𝑇)

We prove this by induction on 𝑖.

• Base case: When 𝑖 = 0, the first two conditions are vacuously true. The last condition is true
because dead(𝑈) = dead(𝑇 ′) = dead(𝑇)

• Inductive case: Assume the statement is true for 𝑖 = 𝑞 where 𝑞 ∈ [𝑛]. We prove that the
statement is true for 𝑖 = 𝑞 + 1. Let 𝑈′ = ( 𝑓𝑞−1 ◦ · · · ◦ 𝑓0) (𝑇 ′) and 𝑈 = 𝑓𝑞 (𝑈′).
Note that the second condition is satisfied because for all 𝑗 ∈ [𝑞], proj 𝑗 (𝑈) = proj 𝑗 (𝑈′) and if
𝑗 = 𝑞, this condition is satisfied by case analysis on proj 𝑗 (𝑈′).
The third condition is also true because dead(𝑈) ⊆ dead(𝑈′) ⊆ dead(𝑇).
We now prove the first condition. Note that when 𝑗 ∈ [𝑞], the statement follows by the Constant
local memory lemma. It suffices to prove the case where 𝑗 = 𝑞, which we do so by case analysis
on whether 𝑅𝑞 is applied. If no 𝑅𝑞 is applied, 𝑈′ = 𝑈 and we are done.
Otherwise, let 𝑈𝑝 be the prefix of 𝑈 with the last element being the last action of 𝑞. Note
that there must exists a trace 𝑉 ∈ Γ𝑘-Alt with 𝑈𝑝 as a prefix and that 𝑞 ∉ dead(𝑉). This
can be done because for all 𝑗 ∈ [𝑞 + 1], proj 𝑗 (𝑈𝑝) = 𝑤0

𝑗
𝑟0
𝑗
. . . 𝑤𝑘−1

𝑗
𝑟 𝑘−1
𝑗

or 𝑈′𝑝𝑑 𝑗 where
𝑈′𝑝 is some prefix of 𝑤0

𝑗
𝑟0
𝑗
. . . 𝑤𝑘−1

𝑗
𝑟 𝑘−1
𝑗

. For all 𝑗 ∈ [𝑛] \ [𝑞 + 1], proj 𝑗 (𝑈𝑝) must be a
prefix of 𝑤0

𝑗
𝑟0
𝑗
. . . 𝑤𝑘−1

𝑗
𝑟 𝑘−1
𝑗

. Thus, we can obtain 𝑉 by appending 𝑑 𝑗 at the end of 𝑈𝑝 for
all 𝑗 ∈ [𝑛] \ [𝑞 + 1]. Now by assumption, we must have some prefix 𝑉 ′ of 𝑉 such that
𝑃(𝑙, fst(J𝑉 ′K𝜋 (𝑙,⊥𝑛)) [dead(𝑉) ← ⊥], dead(𝑉),Θ). By the Trace extension lemma, we have
𝑃(𝑙, fst(J𝑉K𝜋 (𝑙,⊥𝑛)) [dead(𝑉) ← ⊥], dead(𝑉),Θ).
Consider arbitrary 𝑗 ∈ [𝑞 + 1]. By inspecting the type of 𝑃, we thus have fst(J𝑉K𝜋 (𝑙,⊥𝑛)) [ 𝑗] ∈
O⊥. By the Constant local memory lemma, we have fst(J𝑈𝑝K𝜋 (𝑙,⊥𝑛)) [ 𝑗] ∈ O⊥. Finally, by the
Committed value lemma, we have fst(J𝑈K𝜋 (𝑙,⊥𝑛)) [ 𝑗] = fst(J𝑈′K𝜋 (𝑙,⊥𝑛)) [ 𝑗] = fst(J𝑇 ′K𝜋 (𝑙,⊥𝑛) [ 𝑗].

From the above lemma, taking 𝑖 = 𝑛, we have 𝑈 ∈ Γ𝑘-Alt. We obtain 𝑈′ by appending 𝑑 𝑗 for
all 𝑗 ∈ dead(𝑇) \ dead(𝑈). Notice that 𝑈′ is still in Γ𝑘-Alt and dead(𝑈′) = dead(𝑇). It also re-
mains the case that for all 𝑖 ∈ [𝑛], we have J𝑈′K𝜋 = J𝑈K𝜋 = J𝑇 ′K𝜋. By assumption, we have
𝑃(𝑙, fst(J𝑈′K𝜋 (𝑙,⊥𝑛) [dead(𝑈′) ← ⊥], dead(𝑈′),Θ). Performing required substitutions gives us
𝑃(𝑙, fst(J𝑇 ′K(𝑙,⊥𝑛)𝜋) [dead(𝑇) ← ⊥], dead(𝑇),Θ), thus completing the proof.

□
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4.7 Layered to Non-layered Proposition

We show that solving a distributed task with the layered model for most bounded alternating trace
properties implies that we can solve the same task with the non-layered model for the same trace
property.

It should not be surprising as to why the non-layered model can simulate the layered one; the layered
model disallows processes from reading certain values written by others in previous rounds and
intuitively seems more restrictive. In most papers, this proposition is often stated as obvious. The
author still presents a proof of the proposition to illustrate how details can be hidden behind intuition.

This result seems to suggest that the non-layered model appears to be a stronger communication
primitive than the layered model. However, we later show that the layered model can, surprisingly,
simulate the non-layered model (see section 4.13).

Proposition 4.7.1 (Layered to non-layered proposition). Given task description Θ and solvability
property 𝑃, Γ ⊆ Γ𝑘-Alt for some 𝑘 ∈ N, if Θ is 𝑃-solvable under the layered model for Γ traces, then it
is also 𝑃-solvable under the non-layered model for Γ traces.

Proof. Assume the protocol (V, 𝜋) 𝑃-solves Θ under the layered model for Γ traces. We define V′ to
be the set freely generated by the binary operator ⟨_, _⟩, and the variable length list operator [_, . . . , _]
on V.

We assume we have the append @ function on lists with the obvious semantics. We also define the
function len : V′→ N which returns the length of a list, and 0 if the input is not a valid list. Similarly
we have 𝑥 [𝑖] or 𝑥𝑖 as the 𝑖-th value of the list represented by 𝑥 ∈ V′, but ⊥ if it is not a list or we access
an index beyond its length.

We also define the function 𝑓 : V′𝑛 × N→ V′𝑛, where 𝑓 (𝑚, 𝑖) maps the function _𝑣.𝑣 [𝑖] over 𝑚.

We define the protocol (V′, 𝜋′) as follows:

𝜋′𝑤𝑖
(𝑥, 𝑦) =


𝑦 if 𝑥 ∈ O⊥
[𝜋𝑤𝑖
(𝑥,⊥)] if 𝑥 ∈ I

𝑙@[𝜋𝑤𝑖
(𝑧,⊥)] if 𝑥 = ⟨𝑙, 𝑧⟩

⊥ otherwise

𝜋′𝑟𝑖 (𝑥, 𝑚) =



𝑥 if 𝑥 ∈ O⊥{
𝜋𝑟𝑖 (𝑧, 𝑓 (𝑚, len(𝑚𝑖) − 1)) ∈ O⊥ if 𝜋𝑟𝑖 (𝑧, 𝑓 (𝑚, len(𝑚𝑖) − 1)) ∈ O⊥
⟨𝑚𝑖, 𝜋𝑟𝑖 (𝑧, 𝑓 (𝑚, len(𝑚𝑖) − 1))⟩ otherwise

if 𝑥 = ⟨𝑙, 𝑧⟩{
𝜋𝑟𝑖 (𝑥, 𝑓 (𝑚, len(𝑚𝑖) − 1)) if 𝜋𝑟𝑖 (𝑥, 𝑓 (𝑚, len(𝑚𝑖) − 1)) ∈ O⊥
⟨𝑚𝑖, 𝜋𝑟𝑖 (𝑥, 𝑓 (𝑚, len(𝑚𝑖) − 1))⟩ otherwise

otherwise

We claim that this protocol 𝑃-solves Θ under the non-layered model for Γ traces.

We do this by defining the following invariant 𝐼 ⊆ V′𝑛 × (N → V′𝑛) × V′𝑛 × V′𝑛 × A∗. We say that
𝐼 (𝑙, 𝑚, 𝑙′, 𝑚′, 𝑇) holds iff

• The two global memories agree, i.e. for all 𝑠 ∈ N, 𝑖 ∈ [𝑛], 𝑚(𝑠) [𝑖] = 𝑚′[𝑖] [𝑠].

• For all 𝑖 ∈ [𝑛], one of these cases hold:

1. 𝑙𝑖 = 𝑙′
𝑖
and 𝑙𝑖 ∈ O⊥
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2. 𝑑𝑖 ∈ 𝑇
3. 𝑙𝑖 = 𝑙′

𝑖
, 𝑙𝑖 ∈ I, proj𝑖 (𝑇) = 𝜖 , and for all 𝑠 ∈ N, 𝑚(𝑠) [𝑖] = ⊥.

4. 𝑙𝑖 = 𝑙′
𝑖
, 𝑙𝑖 ∈ I, proj𝑖 (𝑇) = 𝑤0

𝑖
, and len(𝑚′

𝑖
) = 1

5. ⟨𝑧, 𝑙𝑖⟩ = 𝑙′
𝑖

for some 𝑧 ∈ V′, 𝑙𝑖 ∉ O⊥, last action of proj𝑖 (𝑇) is a 𝑤𝑠
𝑖

for some 𝑠 ∈ N, and
len(𝑚′

𝑖
) = 𝑠 + 1

6. ⟨𝑚′
𝑖
, 𝑙𝑖⟩ = 𝑙′

𝑖
, 𝑙𝑖 ∉ O⊥, last action of proj𝑖 (𝑇) is a 𝑟 𝑠

𝑖
for some 𝑠 ∈ N, and len(𝑚′

𝑖
) = 𝑠 + 1

We now prove this lemma:

Lemma 4.7.2. For all traces 𝑇 ∈ Γ, prefixes 𝑇 ′ of 𝑇 , 𝑙initial ∈ I𝑛⊥, let (𝑙, 𝑚) = JJ𝑇 ′KK𝜋 (𝑙initial, _𝑘.⊥𝑛) and
(𝑙′, 𝑚′) = J𝑇 ′K𝜋′ (𝑙initial,⊥𝑛), we have 𝐼 (𝑙, 𝑚, 𝑙′, 𝑚′, 𝑇 ′).

We prove this by induction on the length of 𝑇 ′. Note that for the second condition, we only need to
consider the node which executes an action at the end. Also note that 𝑇 and consequently 𝑇 ′ are valid
traces, so we make use of the Compositionality of valid traces implicitly:

• 𝑇 ′ = 𝜖: It is trivial to see that the two global memories agree with each other and case 3 holds.

• 𝑇 ′ = 𝑇 ′′𝑑𝑖: It is trivial to see that two global memories still agree by the induction hypothesis,
the Constant global memory lemma for layered models and the Constant global memory lemma
for non-layered models. Case 2 holds obviously for 𝑖. For all 𝑗 ∈ [𝑛] \ {𝑖}, the same case holds
by the constant memory lemmas (see subsections 2.2.4 and 3.4.1).

• 𝑇 ′ = 𝑇 ′′𝑤𝑖: We first assume the induction hypothesis for the 𝑇 ′′ prefix. For all 𝑗 ∈ [𝑛] \ {𝑖}, the
same case holds by the constant memory lemmas (see subsections 2.2.4 and 3.4.1). For 𝑖, the
cases we need to consider for the 𝑇 ′′ prefix are cases 1, 3, and 6 since 𝑇 is in Γ ⊆ Γ𝑘-Alt.
If case 1 is true before the write action, by the Write After Commit condition and Constant
local memory lemma, both the local and global memories remain unchanged, and thus the two
memories agree and case 1 holds.
If case 3 is true, the write action must be 𝑤0

𝑖
. Unfolding the definition of 𝜋′ and considering the

Constant local memory lemma shows that case 4 holds.
If case 6 is true, the write action must be 𝑤𝑠

𝑖
, and the previous action of 𝑖 must be 𝑤𝑠−1

𝑖
where

𝑠 ≥ 1. Unfolding the definitions and considering the Constant local memory lemma shows that
case 4 holds.

• 𝑇 ′ = 𝑇 ′′𝑟𝑖: We first assume the induction hypothesis for the 𝑇 ′′ prefix. For all 𝑗 ∈ [𝑛] \ {𝑖}, the
same case holds by the constant memory lemmas (see subsections 2.2.4 and 3.4.1). For 𝑖, the
cases we need to consider for the 𝑇 ′′ prefix are cases 1, 4, and 5 since 𝑇 is in Γ ⊆ Γ𝑘-Alt.
If case 1 is true before the read action, by the Read After Commit condition, Constant global
memory lemma for layered models, and Constant global memory lemma for non-layered models
both the local and global memories remain unchanged, and thus the two memories agree and
case 1 holds.
If case 4 is true, the read action must be 𝑟0

𝑖
. By the Constant global memory lemma for layered

models and Constant global memory lemma for non-layered models, the memories must agree.
We now perform another case split. If 𝜋𝑟𝑖 (𝑙𝑖, 𝑚(0)) ∈ O⊥, by unfolding the definitions, we have
case 1. Otherwise, case 6 holds.
If case 5 is true, the read action must be 𝑟 𝑠

𝑖
, and the previous action of 𝑖 must be 𝑟 𝑠

𝑖
where

𝑠 ∈ N. By the Constant global memory lemma for layered models and Constant global memory
lemma for non-layered models, the memories must agree. We now perform another case split.
If 𝜋𝑟𝑖 (𝑙𝑖, 𝑚(𝑠)) ∈ O⊥, by unfolding the definitions, we have case 1. Otherwise, case 6 holds.
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Now consider arbitrary 𝑇 ∈ Γ, 𝑙 ∈ I𝑛⊥. By assumption and the Trace extension lemma, we have
𝑃(𝑙, fst(JJ𝑇KK𝜋 (𝑙, _𝑘.⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ).

It suffices now to prove 𝑃(𝑙, fst(J𝑇K𝜋′ (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ), which we do so by proving
fst(JJ𝑇KK𝜋 (𝑙, _𝑘.⊥𝑛)) [dead(𝑇) ← ⊥][𝑖] = fst(J𝑇K𝜋′ (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥][𝑖] for all 𝑖 ∈ [𝑛].

• 𝑖 ∈ dead(𝑇) : This case is obvious because LHS = ⊥ = RHS.

• 𝑖 ∉ dead(𝑇) : It suffices to prove that fst(JJ𝑇KK𝜋 (𝑙, _𝑘.⊥𝑛)) [𝑖] = fst(J𝑇K𝜋′ (𝑙,⊥𝑛)) [𝑖]. Note
by inspecting the type of solvability property 𝑃, we must have fst(JJ𝑇KK𝜋 (𝑙, _𝑘.⊥𝑛)) [𝑖] ∈ O⊥.
By lemma 4.7.2 and the fact that 𝑇 is itself a prefix of 𝑇 , we have fst(JJ𝑇KK𝜋 (𝑙, _𝑘.⊥𝑛)) [𝑖] =
fst(J𝑇K𝜋′ (𝑙,⊥𝑛)) [𝑖] as required.

□

4.8 Layered Γ𝑘-It to Layered Γ𝑘-Alt Proposition

We show that solving a distributed task with the layered model for Γ𝑘-It traces for some 𝑘 ∈ N implies
that we can solve the same task with the layered model for Γ𝑘-Alt traces.

The intuition behind this is that for any execution trace, we can swap consecutive actions if they are
acting on different layers. This is also one of the reasons why the layered model is easier to reason
about, for it provides us with a nice rearranging property.

Proposition 4.8.1 (Layered Γ𝑘-It to layered Γ𝑘-Alt proposition). Given task descriptionΘ and solvability
property 𝑃, if Θ is 𝑃-solvable under the layered model for Γ𝑘-It traces for some 𝑘 , then there exists
𝑘′ ∈ N such that Θ is 𝑃-solvable under the layered model for Γ𝑘 ′-Alt traces.

Proof. Assume the protocol (V, 𝜋) 𝑃-solvesΘ under the layered model for Γ𝑘-It traces for some 𝑘 ∈ N.
We claim that (V, 𝜋) also 𝑃-solves the layered model for Γ𝑘-Alt traces.

Consider arbitrary numbered trace 𝑇 ∈ Γ𝑘-Alt. Now consider the following rewriting system with a
family of rules (𝑅𝑎𝑥

𝑖
,𝑏

𝑦

𝑗
)𝑎𝑥

𝑖
,𝑏

𝑦

𝑗
where 𝑎, 𝑏 ∈ {𝑟, 𝑤, 𝑑}, 𝑖, 𝑗 ∈ [𝑛], and 𝑥, 𝑦 ∈ N.

𝑅𝑎𝑥
𝑖
,𝑏

𝑦

𝑗
: 𝑇1𝑎

𝑥
𝑖 𝑏

𝑦

𝑗
𝑇2 ⇒ 𝑇1𝑏

𝑦

𝑗
𝑎𝑥𝑖 𝑇2 where 𝑥 > 𝑦 and 𝑖 ≠ 𝑗

Lemma 4.8.2. The above rewriting system is terminating on all traces 𝑇 ∈ Γ𝑘-Alt.

Notice firstly that whenever we apply a rewrite on a trace 𝑇 ∈ Γ𝑘-Alt to form 𝑇 ′, 𝑇 ′ is also in Γ𝑘-Alt by
definition.

Now suppose we replace each action in the trace by their layer number to form a new list 𝑙, then
a rewrite decreases the number of inversions of 𝑙 by exactly one. Since the minimum number of
inversions by a list formed by a trace in Γ𝑘-Alt is finite, i.e. 0 in the case of an iterated trace, the
rewriting system must be terminating.

Let 𝑓 by a function which takes in a trace in Γ𝑘-Alt, and returns the trace after repeatedly applying
some rule in the rewriting system until it terminates2.
2 We have not proven that this rewriting system is confluent. This is not necessary for we only need to pick some terminating

trace. Moreover, the confluence result is obvious.
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Lemma 4.8.3. 𝑓 (𝑇) ∈ Γ𝑘-It.

We know that 𝑓 (𝑇) ∈ Γ𝑘-Alt. It suffices to prove that it is iterated. We prove this by contradiction.
Suppose there exists 𝑎𝑥

𝑖
, 𝑏

𝑦

𝑗
in 𝑓 (𝑇) where 𝑥 < 𝑦 and 𝑏

𝑦

𝑗
appears before 𝑎𝑥

𝑖
. We also must have some

𝑐
𝑧1
𝑘1
, 𝑑

𝑧2
𝑘2

where 𝑧1 < 𝑧2 and 𝑑
𝑧2
𝑘2

appears right before 𝑐
𝑧1
𝑘1

with no actions in between. This is because
if this were not the case, the list with the projection of the action’s layer would be monotonically
increasing and we will not be able to find any inversion.

Now we must have 𝑘1 ≠ 𝑘2 because 𝑓 (𝑇) is alternating. However we can perform the rewrite rule
𝑅
𝑑
𝑧2
𝑘2
,𝑐

𝑧1
𝑘1

which contradicts our assumption that no rewrite rule can be performed on 𝑓 (𝑇) any further.

Lemma 4.8.4. For any protocol (V, 𝜋), we have JJ𝑇KK𝜋 = JJ 𝑓 (𝑇)KK𝜋.

This can be shown by induction on the number of rewriting steps performed on the trace. From the
Compositionality of valid traces, we only need to prove JJ𝑎𝑥

𝑖
𝑏
𝑦

𝑗
KK𝜋 = JJ𝑏𝑦

𝑗
𝑎𝑥
𝑖
KK𝜋 for all 𝑥 > 𝑦 and 𝑖 ≠ 𝑗 .

This is however obvious by unfolding the definitions and is left as an exercise for the readers.

Lemma 4.8.5. dead(𝑇)=dead( 𝑓 (𝑇)).

This is obvious by observing that each rewrite retains the same number of actions in the trace.

Consider arbitrary 𝑙 ∈ I𝑛⊥. By our assumption and lemma 4.8.3, there exists a prefix 𝑇 ′ of 𝑓 (𝑇) such
that 𝑃(𝑙, fst(JJ𝑇 ′KK𝜋 (𝑙, _𝑘.⊥𝑛)) [dead( 𝑓 (𝑇)) ← ⊥], dead( 𝑓 (𝑇)),Θ).

We then have:

𝑃(𝑙, fst(JJ𝑇 ′KK𝜋 (𝑙, _𝑘.⊥𝑛)) [dead( 𝑓 (𝑇)) ← ⊥], dead( 𝑓 (𝑇)),Θ)
⇒ 𝑃(𝑙, fst(JJ 𝑓 (𝑇)KK𝜋 (𝑙, _𝑘.⊥𝑛)) [dead( 𝑓 (𝑇)) ← ⊥], dead( 𝑓 (𝑇)),Θ) (Trace extension lemma)
⇒ 𝑃(𝑙, fst(JJ𝑇KK𝜋 (𝑙, _𝑘.⊥𝑛)) [dead( 𝑓 (𝑇)) ← ⊥], dead( 𝑓 (𝑇)),Θ) (Lemma 4.8.4)
⇒ 𝑃(𝑙, fst(JJ𝑇KK𝜋 (𝑙, _𝑘.⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ) (Lemma 4.8.5)

which completes our proof.

□

4.9 𝛿-protocol Proposition

We show that we can solve a distributed task with the non-layered model for most bounded alternating
trace properties if and only if we can find a 𝛿-protocol that solves the same task with the non-layered
model for the same trace property. This result also holds for the layered model.

The intuition behind this is that the decision function of a 𝛿 protocol can easily be embedded in the
final round of a normal protocol. Note however that extra care is needed to ensure that the newly
constructed (𝛿-)protocol satisfies all the necessary conditions, e.g. Write After Commit.

Proposition 4.9.1 (𝛿-protocol proposition). For any distributed task Θ, trace property Γ ⊆ Γ𝑘-Alt for
some 𝑘 ∈ N, and solvability property 𝑃, Θ is 𝑃-solvable under the non-layered model for Γ traces if
and only if there exists a 𝛿-protocol 𝜙 that 𝑃-solves Θ under the non-layered model for Γ traces. This
proposition is also true in the layered case.
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Proof. We only prove this for the non-layered case. The layered case is similar.

(⇒) : Assume the protocol (V, 𝜋) 𝑃-solves Θ under the non-layered model for Γ traces. We define
V′ to be the set freely generated by the binary operator ⟨_, _⟩ on V.

We define the functions val, his: V′→ V′ as follows:

val(𝑥) =
{
𝑎 if 𝑥 = ⟨𝑎, 𝑏⟩
𝑥 otherwise

his(𝑥) =
{
𝑏 if 𝑥 = ⟨𝑎, 𝑏⟩
⊥ otherwise

We define the 𝛿-protocol (V′, 𝜙) as follows:

𝜙𝑤𝑖
(𝑥) = 𝜋𝑤𝑖

(val(𝑥), his(𝑥))

𝜙𝑟𝑖 (𝑥, 𝑚) =
{⊥ if 𝑥 = ⊥
⟨𝜋𝑟𝑖 (val(𝑥), 𝑚), 𝑚⟩ otherwise

𝜙𝛿𝑖 (𝑥) = val(𝑥)

We claim that (V′, 𝜙) 𝑃-solves Θ under the non-layered model for Γ traces. The full proof can be
found in Appendix E.

(⇐): Assume the 𝛿-protocol (V, 𝜙) 𝑃-solves Θ under the non-layered model for Γ traces. We define
V′ to be the set freely generated by the binary operator ⟨_, _⟩ on V ∪ N.

We define the functions val, ver: V′→ V′ as follows:

val(𝑥) =
{
𝑎 if 𝑥 = ⟨𝑎, 𝑏⟩
𝑥 otherwise

ver(𝑥) =
{
𝑏 if 𝑥 = ⟨𝑎, 𝑏⟩
0 otherwise

We define the normal protocol (V′, 𝜋) as follows:

𝜋𝑤𝑖
(𝑥, 𝑦) =

{
𝑦 if 𝑥 ∈ O⊥
𝜙𝑤𝑖
(val(𝑥)) otherwise

𝜋𝑟𝑖 (𝑥, 𝑚) =


𝑥 if 𝑥 ∈ O⊥{
𝜙𝛿𝑖 (𝜙𝑟𝑖 (val(𝑥), 𝑚)) ver(𝑥)=k-1
⟨𝜙𝑟𝑖 (val(𝑥), 𝑚), ver(𝑥) + 1⟩ otherwise

otherwise

We claim that (V′, 𝜋) 𝑃-solves Θ under the non-layered model for Γ traces. The full proof can be
found in Appendix E.

□
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4.10 Layered Γ𝑘-It+IS to Layered Γ𝑘′-It Proposition

We show that solving a distributed task with the layered model for Γ𝑘-It+Is traces for some 𝑘 ∈ N
implies that we can solve the same distributed task with the layered model for Γ𝑘 ′-It traces for some
𝑘′ ∈ N.

The algorithm in this proof is adapted from Borowsky and Gafni [1]. The intuition behind this
algorithm is that we can use 𝑛 layers of the layered memory to simulate a single immediate snapshot
layer.

Before we proceed, we define another trace property that would aid our proof.

Definition 4.10.1 (Subset Trace Property). Given set 𝑠 ⊆ [𝑛] and trace property Γ, a trace 𝑇 is in Γ𝑠

if and only if 𝑇 = proj𝑠 (𝑇 ′) for some 𝑇 ′ ∈ Γ.

Informally, the superscript 𝑠 is the set of processes participating in the trace. Thus we have Γ[𝑛] = Γ

for any trace property Γ.

Proposition 4.10.1 (Layered Γ𝑘-It+IS to layered Γ𝑘 ′-It proposition). Given task description Θ and
solvability property 𝑃, if Θ is 𝑃-solvable under the layered model for Γ𝑘-It+IS traces for some 𝑘 ∈ N,
then Θ is also 𝑃-solvable under the layered model for Γ𝑘 ′-It traces for some 𝑘′ ∈ N.

Proof. Assume the protocol (Vbase, 𝜋) 𝑃-solves Θ under the layered model for Γ𝑘-It+IS traces. By the
𝛿-protocol proposition (see section 4.9), we have a 𝛿-protocol (V, 𝜙) that 𝑃-solves Θ under the layered
model for Γ𝑘-It+IS traces. Moreover, it suffices to find a 𝛿-protocol that 𝑃-solves Θ under the layered
model for Γ𝑘 ′-It traces for some 𝑘′ ∈ N.

We define V′ to be the set freely generated by the unary operator {_} and the trenary operator ⟨_, _, _⟩
on V ∪ N.

We define val, rnd, and bool as functions defined by the respective projections for input values of the
⟨⟩ tuple, or returning 𝑥, 0, 0, respectively, when given 𝑥 as input otherwise.

We define the function cnt: V′𝑛 → N as follows:

cnt(𝑚) = |{𝑖 ∈ [𝑛] | ∃𝑦 ∈ V′.𝑚 [𝑖] = {𝑦}}|

We also define the function snap: V′𝑛 → V′𝑛 as follows:

snap(𝑚) [𝑖] =
{
𝑦 if m[i]={y}
𝑚 [𝑖] otherwise

We define a 𝛿-protocol (V′, 𝜙′) as follows:

37



𝜙′𝑤𝑖
(𝑥) =

{⊥ if 𝑥 = ⊥ or bool(𝑥) = 1
{𝜙𝑤𝑖
(val(𝑥))} otherwise

𝜙′𝑟𝑖 (𝑥, 𝑚) =



⊥ if 𝑥 = ⊥


⟨val(𝑥), rnd(𝑥) + 1, 0⟩ if bool(𝑥) = 1
⟨𝜙𝑟𝑖 (val(𝑥), snap(𝑚)),
rnd(𝑥) + 1, 0⟩ otherwise

if rnd(𝑥)%𝑛 = 𝑛 − 1



⟨𝜙𝑟𝑖 (val(𝑥), snap(𝑚)),
rnd(𝑥) + 1, 1⟩ if cnt(𝑚) ≥ 𝑛 −

(rnd(𝑥)%𝑛) and
bool(𝑥) = 0

⟨val(𝑥), rnd(𝑥) + 1, bool(𝑥)⟩ otherwise

otherwise

otherwise

𝜙′𝛿𝑖 (𝑥) = 𝜙𝛿𝑖 (val(𝑥))

We claim that (V′, 𝜙′) 𝑃-solves Θ for Γ𝑘 ′-It traces where 𝑘′ = 𝑛 × 𝑘 .

We define the following invariant 𝐼 : V𝑛 × V′𝑛 × N × P([𝑛]) where 𝐼 (𝑙, 𝑙′, 𝑝, 𝑠) holds iff

• For all 𝑖 ∈ 𝑠, one of these cases is true:

1. 𝑙 [𝑖] = 𝑙′[𝑖] = ⊥
2. 𝑙′[𝑖] = ⟨𝑙 [𝑖], 𝑝 × 𝑛, 0⟩
3. 𝑙 [𝑖] = 𝑙′[𝑖] ∈ I and 𝑝 = 0

Consider the following lemma:

Lemma 4.10.2. For all 𝑠 ⊆ [𝑛], 𝑝 ∈ N, trace 𝑇 ∈ Γ𝑠
𝑛-It, and vectors 𝑙1 : V𝑛, 𝑙2 : V′𝑛 satisfying

𝐼 (𝑙1, 𝑙2, 𝑝, 𝑠), there exists a trace 𝑇 ∈ Γ𝑠
1-It+IS where dead(𝑇) = dead(𝑇 ′) such that when we let

𝑙′1 = fst(JJ𝑇KK𝜙 (𝑙1, _𝑘.⊥𝑛)) and 𝑙′2 = fst(JJ𝑇 ′KK𝜙′ (𝑙2, _𝑘.⊥𝑛)), we have 𝐼 (𝑙′1, 𝑙
′
2, 𝑝 + 1, 𝑠 \ dead(𝑇)).

Before we prove this lemma, we show why this is helpful.

Consider arbitrary trace 𝑇 ′ ∈ Γ𝑘 ′-It and 𝑙 : I𝑛⊥. Note we can split 𝑇 ′ into 𝑘 + 1 segments where each
segment 𝑇 ′

𝑗
contains actions labelled 𝑗 × 𝑛 to ( 𝑗 + 1) × 𝑛 − 1, with 𝑇 ′

𝑘
only containing 𝑑 actions.

By lemma 4.10.2, we are able to produce a trace 𝑇 = 𝑇0𝑇1 . . . 𝑇𝑘−1𝑇
′
𝑘−1, where each 𝑇𝑗 is each

produced by the lemma. It is not difficult to show that 𝑇 ∈ Γ𝑘-It+IS. Let 𝑙1 = fst(JJ𝑇KK𝜙 (𝑙, _𝑘.⊥𝑛))
and 𝑙2 = fst(JJ𝑇 ′KK𝜙′ (𝑙, _𝑘.⊥𝑛)). By the lemma and induction, we have 𝐼 (𝑙1, 𝑙2, 𝑘, [𝑛] \ dead(𝑇)).
By assumption we have 𝑃(𝑙, 𝜙𝛿 (𝑙1) [dead(𝑇) ← ⊥], dead(𝑇) ← ⊥,Θ). By the definition of the 𝐼

invariant, we must also have 𝑃(𝑙, 𝜙′
𝛿
(𝑙2) [dead(𝑇 ′) ← ⊥], dead(𝑇 ′) ← ⊥,Θ) as required.

We now prove lemma 4.10.2. Consider arbitrary 𝑠 ⊆ [𝑛], 𝑝 ∈ N, trace 𝑇 ∈ Γ𝑠
𝑛-It, and vectors 𝑙1 : V𝑛,

𝑙2 : V′𝑛 satisfying 𝐼 (𝑙1, 𝑙2, 𝑝, 𝑠).

We define 𝑇𝑖 as the prefix of 𝑇 with all actions of round number smaller than 𝑖. We call a process
pending if after executing some trace, it has not died and the bool value of its local value is 0.

Lemma 4.10.3. For all 𝑘 ∈ [𝑛], after executing 𝑇𝑘 , there are at most 𝑛 − 𝑘 processes still pending.
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The base case where 𝑘 = 0 is trivial. Assume there are at most 𝑛 − 𝑘 processes still pending after
executing 𝑇𝑘 . The interesting case is when there are exactly 𝑛 − 𝑘 processes still pending. If there
is any process dying in the new round, the statement is thus true. In the other case, if there are no
processes dying in the new round, for all the processes still pending in the previous round, there must
be one of them which performed its read the last. It thus must have read 𝑛 − 𝑘 values which is larger
or equal to 𝑛 − 𝑘 and thus the bool value must be updated to 1. Thus at most 𝑛 − 𝑘 − 1 processes are
pending in the next round.

With this lemma, each process that stops pending at layer 𝑘 must perform the same simulated read
since there are at most 𝑛 − 𝑘 processes still pending after the previous layer, and a read is simulated in
that layer if at least 𝑛 − 𝑘 values are seen, which satsifies the immediate snapshot characteristics.

Let 𝑆𝑘 be the set of processes that stops pending after executing 𝑇𝑘 .

Let the elements of 𝑆𝑘 be 𝑎0, . . . 𝑎 |𝑆𝑘 |−1. We define 𝑊 (𝑆𝑘 ) = 𝑤𝑎0 . . . 𝑤𝑎 |𝑆𝑘 |−1 . Let 𝑅(𝑆𝑘 ) =

𝑒𝑎0 . . . 𝑒𝑎 |𝑆𝑘 |−1 , where 𝑎𝑖 = 𝑑𝑖 if 𝑖 dies in 𝑇 and 𝑟𝑖 otherwise.

The required trace 𝑇 ′ is thus 𝑊 (𝑆𝑛)𝑅(𝑆𝑛) . . .𝑊 (𝑆1)𝑅(𝑆1).

□

Remark. A similar (but definitely more complicated) proof can be presented for the non-layered version
of the proposition. However (fortunately for the author), that proof is not necessary for proving the
main theorem of this report.

4.11 Full-information 𝛿-protocol Proposition

We show that we can solve a distributed task with a 𝛿-protocol under the non-layered model for most
bounded alternating trace properties if and only if we can solve the same task with a full-information
𝛿-protocol under the non-layered model for the same trace property. This result holds for the layered
model as well.

The trick behind the proof is that we can construct a simulation relation between the states of the
system under the original 𝛿-protocol and the newly constructed full-information 𝛿-protocol, such that
for each action step, the simulation relation holds between the two systems.

Proposition 4.11.1 (Full-information 𝛿-protocol proposition). For any distributed task Θ, trace prop-
erty Γ ⊆ Γ𝑘-Alt for some 𝑘 ∈ N, and solvability property 𝑃, there exists a 𝛿-protocol 𝜙 that 𝑃-solves
Θ under the non-layered model for Γ traces if and only if there exists a full-information 𝛿-protocol 𝜙′
that 𝑃-solves Θ under the non-layered model for Γ cases. This proposition is also true in the layered
case.

Proof. We only prove this for the non-layered case. The layered case is similar.

(⇒): Assume the 𝛿-protocol (V, 𝜙) 𝑃-solves Θ under the non-layered model for Γ traces. We define
V′ to be the set freely generated by the 𝑛-ary operator (_, . . . , _) on V.

We also define a family of functions 𝑓𝑖 : V′→ V, indexed by 𝑖 ∈ [𝑛], inductively as follows:

𝑓𝑖 (𝑥) =
{
𝑥 if 𝑥 ∈ V
𝜙𝑟𝑖 ( 𝑓𝑖 (𝑥𝑖), (𝜙𝑤0 ◦ 𝑓0(𝑥0), . . . , 𝜙𝑤𝑛−1 ◦ 𝑓𝑛−1(𝑥𝑛−1))) if 𝑥 = (𝑥0, . . . , 𝑥𝑛−1)
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We define a full-information 𝛿-protocol (V′, 𝜙′) as follows:

𝜙′𝑤𝑖
(𝑥) = 𝑥

𝜙′𝑟𝑖 (𝑥, 𝑚) =
{⊥ if 𝑥 = ⊥
(𝑚) otherwise

𝜙′𝛿𝑖 (𝑥) = 𝜙𝛿𝑖 ( 𝑓𝑖 (𝑥))

We claim that (V′, 𝜙′) 𝑃-solves Θ for Γ traces.

We define the following invariant 𝐼 ⊆ V𝑛 ×V𝑛 ×V′𝑛 ×V′𝑛 ×A∗ where 𝐼 (𝑙, 𝑚, 𝑙′, 𝑚′, 𝑇) holds if for all
𝑖 ∈ [𝑛]

• 𝑙 [𝑖] = 𝑓𝑖 (𝑙′[𝑖])

• 𝑚 [𝑖] = 𝜋𝑤𝑖
◦ 𝑓𝑖 (𝑚′[𝑖])

• If the last action of proj𝑖 (𝑇) is a write, then 𝑚′[𝑖] = 𝑙′[𝑖]

Consider the following lemma:

Lemma 4.11.2. For all𝑇 ∈ Γ, for all prefixes𝑇 ′ of𝑇 , vectors 𝑙initial ∈ I𝑛⊥, let (𝑙, 𝑚) = J𝑇 ′K𝜙 (𝑙initial,⊥𝑛),
let (𝑙′, 𝑚′) = J𝑇 ′K𝜙′ (𝑙initial,⊥𝑛), we have 𝐼 (𝑙, 𝑚, 𝑙′, 𝑚′, 𝑇 ′).

We prove this by induction on the length of 𝑇 ′. Note that 𝑇 and subsequently 𝑇 ′ are valid traces, so
we make use of the Compositionality of valid traces implicitly:

• 𝑇 ′ = 𝜖: All three conditions hold trivially.

• 𝑇 ′ = 𝑇 ′′𝑑𝑖: By the constant memory lemmas (see subsection 2.2.4) and the induction hypothesis,
the three conditions hold.

• 𝑇 ′ = 𝑇 ′′𝑤𝑖: We assume the induction hypothesis for the 𝑇 ′′ prefix. By the Constant local
memory lemma and the Constant global memory lemma for layered models, the local memory
of all processes and global memory other than the 𝑖-th index remains unchanged. Thus the first
condition is satisfied.
We now check the second condition:

LHS
=𝜙𝑤𝑖

(𝑙 [𝑖]) (semantics of 𝛿-protocol)
=𝜙𝑤𝑖

( 𝑓𝑖 (𝑙′[𝑖])) (induction hypothesis)
=𝜙𝑤𝑖

( 𝑓𝑖 (𝜙′𝑤𝑖
(𝑙′[𝑖]))) (semantics of 𝛿-protocol)

=RHS

Finally, for the third condition, since the last action of proj𝑖 (𝑇 ′) is a write, we also have:

LHS
=𝜙𝑤𝑖

(𝑙′[𝑖]) (semantics of 𝛿-protocol)
=𝑙′[𝑖] (Full-information write)
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• 𝑇 ′ = 𝑇 ′′𝑟𝑖: We assume the induction hypothesis for the𝑇 ′′ prefix. By the Constant local memory
lemma and the Constant global memory lemma for layered models, the global memory and the
local memory other than the 𝑖-th process remains unchanged. Thus the second condition is
satisfied.
The third condition is also vacuously true since the last action of proj𝑖 (𝑇 ′) is a read.
It suffices to check only the first condition. We perform a case analysis:

– 𝑙′[𝑖] = ⊥: By the induction hypothesis, we also have 𝑙 [𝑖] = ⊥. After the read, by the
(Read strictness) condition, the first condition still holds.

– 𝑙′[𝑖] ≠ ⊥: Since 𝑇 ′ is alternating, we know that the last action of proj𝑖 (𝑇 ′′) must be a
write. Thus we have:

LHS
=𝜙𝑟𝑖 (𝑙 [𝑖], 𝑚) (semantics of 𝛿-protocol)
=𝜙𝑟𝑖 ( 𝑓𝑖 (𝑙′[𝑖]), 𝑚) (induction hypothesis)
=𝜙𝑟𝑖 ( 𝑓𝑖 (𝑙′[𝑖]), (𝜙𝑤0 ◦ 𝑓0(𝑚′[0]), . . . , 𝜙𝑤𝑛−1 ◦ 𝑓𝑛−1(𝑚′[𝑛 − 1])))) (induction hypothesis)
=𝜙𝑟𝑖 ( 𝑓𝑖 (𝑚′[𝑖]), (𝜙𝑤0 ◦ 𝑓0(𝑚′[0]), . . . , 𝜙𝑤𝑛−1 ◦ 𝑓𝑛−1(𝑚′[𝑛 − 1])))) (induction hypothesis)
= 𝑓𝑖 ((𝑚′0, . . . , 𝑚

′
𝑛−1)) (definition of 𝑓𝑖)

= 𝑓𝑖 (𝜙′𝑟𝑖 (𝑙
′[𝑖], 𝑚′)) (definition of 𝜙′)

=RHS

Consider arbitrary trace 𝑇 ∈ Γ and vector 𝑙initial ∈ I𝑛⊥.

By assumption, we have 𝑃(𝑙initial, 𝜙𝛿 (fst(𝑙initial,⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ). By lemma 4.11.2,
we thus also have 𝑃(𝑙initial, 𝜙

′
𝛿
(fst(𝑙initial,⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ) as required.

(⇐): This direction is trivial because any full-information 𝛿-protocol is also a 𝛿 protocol. □

4.12 Layered ΓIt+IS to Layered Γ𝑘-It+IS Proposition

We show that solving a distributed task with the layered model for ΓIt+IS traces implies that we can
solve the same task with the layered model for Γ𝑘-It+IS for some 𝑘 ∈ N.

This proposition is special in the sense that the proof does not follow the proof outline presented
in section 4.1. Instead, we make use of König’s lemma [5] to show that it cannot be the case for a
protocol to both solve a distributed task under the layered model for ΓIt+IS traces while not being able
to solve the same task under the layered model for Γ𝑘-It+IS traces for all 𝑘 ∈ N.

Various papers claimed that this argument is obvious [2][6]. However, no paper ever provided a
rigorous proof of this3.

Proposition 4.12.1 (Layered ΓIt+IS to layered Γ𝑘-It+IS proposition). Given task description Θ and
solvability property 𝑃, if Θ is 𝑃-solvable under the layered model for ΓIt+IS traces, then there exists
𝑘 ∈ N such that Θ is 𝑃-solvable under the layered model for Γ𝑘-It+IS traces.
3 In fact, the author is not able to prove some variants of this proposition, such as the reduction from non-layered ΓAlt to

non-layered Γ𝑘-Alt (even if we restrict our solvability property to be that of HKR’s solvability property), even though they
are claimed to be easily proven by König’s lemma [2][6].
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Proof. Assume the protocol (V, 𝜋) 𝑃-solves Θ under the layered model for ΓIt+IS traces. We claim
that there exists 𝑘 ∈ N such that (V, 𝜋) 𝑃-solves Θ under the layered model for Γ𝑘-It+IS traces.

Assume the contrary, i.e. for all 𝑘 ∈ N, there exists 𝑙 ∈ I𝑛⊥, 𝑇 ∈ Γ𝑘-It+IS, such that there does not exist
prefix 𝑇 ′ of 𝑇 such that 𝑃(𝑙, fst(JJ𝑇 ′KK𝜋 (𝑙, _𝑘.⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ). Since 𝑇 is a prefix of
itself, we cannot have 𝑃(𝑙, fst(JJ𝑇KK𝜋 (𝑙, _𝑘.⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ) for that chosen 𝑘 ∈ N,
for all 𝑙 ∈ I𝑛⊥ and 𝑇 ∈ Γ𝑘-It+IS.

For all 𝑖 ∈ N, let 𝑓𝑖 be the function that takes in an iterated numbered trace, and returns the finite prefix
of the trace containing all actions numbered with an index smaller than 𝑖.

Lemma 4.12.2. For all 𝑘, 𝑘′ ∈ N with 𝑘 ≤ 𝑘′, 𝑇 ∈ Γ𝑘-It+IS, 𝑓𝑘 ′ (𝑇) ∈ Γ𝑘 ′-It+IS

This is trivial by checking the definition.

We now construct a graph 𝐺 as follows:

• The set of vertices of 𝐺 contains a distinguished root h and tuples of the form (𝑙, 𝑇, 𝑠) for all
𝑙 ∈ I𝑛⊥, 𝑘 ∈ N, 𝑇 ∈ Γ𝑘-It+IS, 𝑠 ⊆ [𝑛].

• The edges of 𝐺 come in two forms:

– There is an edge between h and (𝑙, 𝜖 , 𝑠) for all 𝑙 ∈ I𝑛⊥, 𝑠 ⊆ [𝑛].
– There is an edge between (𝑙, 𝑓𝑘 (𝑇), 𝑠) and (𝑙, 𝑇, 𝑠) for all 𝑙 ∈ I𝑛⊥, 𝑘 ∈ N, 𝑇 ∈ Γ(𝑘 + 1)-It+IS, 𝑠 ⊆
[𝑛] such that dead(𝑇) ⊆ 𝑠 and ¬𝑃(𝑙, fst(JJ 𝑓𝑘 (𝑇)KK𝜋 (𝑙, _𝑘.⊥𝑛)) [𝑠← ⊥], 𝑠,Θ).

Note that 𝐺 is not necessarily connected. Let 𝐻 be the subgraph of 𝐺 containing all vertices reachble
from h.

Lemma 4.12.3. 𝐻 is a tree.

Suppose all edges defined above are directed. Note each vertex has in-degree at most 1. Since 𝐻 is
connected, there does not exist any cycles in the graph and thus 𝐻 must be a tree.

Lemma 4.12.4. 𝐻 is locally finite.

This is trivial since the sets I𝑛⊥,P(𝑛), Γ𝑘-It+IS is finite for all 𝑘 ∈ N.

Lemma 4.12.5. 𝐻 is infinite.

It suffices to prove that for all 𝑚 ∈ N, there exists a path of length at least 𝑚 from h. Consider
arbitrary 𝑚.

By assumption, there exists 𝑙 ∈ I𝑛⊥, 𝑇 ∈ Γ𝑚-It+IS such that

¬𝑃(𝑙, fst(J𝑇K𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ)

By induction on 𝑚 and the contrapositive of the Trace extension lemma, it can be shown that there
exists a path of the form h, (𝑙, 𝑓0(𝑇), dead(𝑇)), (𝑙, 𝑓1(𝑇), dead(𝑇)), . . . , (𝑙, 𝑓𝑚 (𝑇), dead(𝑇)), which
is of length 𝑚 + 2 ≥ 𝑚.

We now cite a well-known result in graph theory.

Lemma 4.12.6 (König’s lemma [5]). A locally finite tree is infinite if and only if it has an infinite
path.

42



By König’s lemma, there exists an infinite path in 𝐻. Since every vertex is reachable from h, there
must exists an infinite path starting from h. It is not difficult to see that this path must be of the form
h, (𝑙′, 𝑇0, 𝑠), (𝑙′, 𝑇1, 𝑠), . . . for some 𝑙′ ∈ I𝑛⊥, 𝑠 ⊆ [𝑛], 𝑇𝑖 ∈ Γ𝑖-It+IS for each 𝑖 ∈ N such that 𝑇𝑖 ≤ 𝑇𝑖+1 for
each 𝑖 ∈ N and dead(⊔𝑖 𝑇𝑖) ⊆ 𝑠.

Lemma 4.12.7.
⊔

𝑖 𝑇𝑖 ∈ ΓIt+IS

This is obvious since each 𝑇𝑖 is just an extension of the previous by adding an another round. The
immediate snapshot property is also maintained.

By assumption, there must exists a prefix𝑇 ′ of
⊔

𝑖 𝑇𝑖 satisfying𝑃(𝑙, fst(JJ𝑇 ′KK𝜋 (𝑙, _𝑘.⊥𝑛)) [dead(⊔𝑖 𝑇𝑖) ←
⊥], dead(⊔𝑖 𝑇𝑖),Θ). Consider 𝑇𝑗 for some 𝑗 ∈ N such that 𝑇 ′ ≤ 𝑇𝑗 . By the Trace extension lemma,
𝑃(𝑙, fst(JJ𝑇𝑗KK𝜋 (𝑙, _𝑘.⊥𝑛)) [dead(⊔𝑖 𝑇𝑖) ← ⊥], dead(⊔𝑖 𝑇𝑖),Θ).

By the property of our chosen path, we have ¬𝑃(𝑙, fst(JJ𝑇𝑗KK𝜋 (𝑙, _𝑘.⊥𝑛)) [𝑠 ← ⊥], 𝑠,Θ). It suffices to
prove 𝑃(𝑙, fst(JJ𝑇𝑗KK𝜋 (𝑙, _𝑘.⊥𝑛)) [𝑠← ⊥], 𝑠,Θ) to achieve a contradiction.

Lemma 4.12.8. There exists a trace 𝑈 ∈ ΓIt+IS such that 𝑇𝑗 ≤ 𝑈 and dead(𝑈) = 𝑠.

This is because we can define 𝑈 as 𝑇𝑗𝑑𝑖0𝑑𝑖1 . . . 𝑑𝑖𝑞𝑈
′𝑈′𝑈′ . . . , where each (𝑖𝑟) is a distinct element

such that {𝑖0, . . . , 𝑖𝑞} = 𝑠 \ dead(⊔𝑖 𝑇𝑖) and 𝑈′ = 𝑤 𝑗0𝑟 𝑗0𝑤 𝑗1𝑟 𝑗1 . . . 𝑤 𝑗𝑥𝑟 𝑗𝑥 where each ( 𝑗𝑟) is a distinct
element such that { 𝑗0, . . . , 𝑗𝑥} = [𝑛] \ 𝑠. We can then check that 𝑈 is iterated, immediate snapshot,
and is in Γalt.

By assumption, there exists a prefix 𝑈′′ of 𝑈 such that 𝑃(𝑙, fst(JJ𝑈′′KK𝜋 (𝑙, _𝑘.⊥𝑛)) [𝑠← ⊥], 𝑠,Θ).

We perform a case split:

• 𝑇𝑗 ≤ 𝑈′′: To achieve our contradiction, it suffices to prove that fst(JJ𝑇𝑗KK𝜋 (𝑙, _𝑘.⊥𝑛)) [𝑠← ⊥] =
fst(JJ𝑈′′KK𝜋 (𝑙, _𝑘.⊥𝑛)) [𝑠← ⊥].
Consider arbitrary 𝑖 ∈ [𝑛], we perform a case analysis.

– 𝑖 ∈ 𝑠: We obviously have

fst(JJ𝑇𝑗KK𝜋 (𝑙, _𝑘.⊥𝑛)) [𝑠← ⊥][𝑖]
= ⊥
= fst(JJ𝑈′′KK𝜋 (𝑙, _𝑘.⊥𝑛)) [𝑠← ⊥][𝑖]

– 𝑖 ∉ 𝑠: We have

fst(JJ𝑇𝑗KK𝜋 (𝑙, _𝑘.⊥𝑛)) [𝑠← ⊥][𝑖]
= fstJJ𝑇𝑗KK𝜋 (𝑙, _𝑘.⊥𝑛)) [dead(

⊔
𝑖

𝑇𝑖) ← ⊥][𝑖] (dead(
⊔
𝑖

𝑇𝑖) ⊆ 𝑠)

∈ O⊥ (type of 𝑃)

Since dead(⊔𝑖 𝑇𝑖) ⊆ 𝑠, we have

fstJJ𝑇𝑗KK𝜋 (𝑙, _𝑘.⊥𝑛)) [dead(
⊔
𝑖

𝑇𝑖) ← ⊥][𝑖] = fstJJ𝑇𝑗KK𝜋 (𝑙, _𝑘.⊥𝑛)) [𝑖]

By the Committed value lemma and Compositionality of valid traces, we have

fstJJ𝑇𝑗KK𝜋 (𝑙, _𝑘.⊥𝑛)) [𝑖] = fstJJ𝑈′′KK𝜋 (𝑙, _𝑘.⊥𝑛)) [𝑖]

Finally with dead(⊔𝑖 𝑇𝑖) ⊆ 𝑠, we have fstJJ𝑈′′KK𝜋 (𝑙, _𝑘.⊥𝑛)) [𝑖] = fstJJ𝑈′′KK𝜋 (𝑙, _𝑘.⊥𝑛)) [𝑠←
⊥][𝑖], which completes the proof.
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• 𝑈′′ ≤ 𝑇𝑗 : We have 𝑃(𝑙, fst(JJ𝑇𝑗KK𝜋 (𝑙, _𝑘.⊥𝑛)) [𝑠← ⊥], 𝑠,Θ) by the Trace extension lemma.

For each case a contradiction is achieved, thus completing our proof. □

Remark. We only prove this for the layered version, but we note that the proof also works for the
non-layered version though it is not a helpful proposition for us.

4.13 Non-layered ΓAlt to Layered ΓIt Proposition

We finally now come to the pons asinorum of this report. We show that solving a distributed task with
the non-layered model for ΓAlt traces implies that we can solve the same task with the layered model
for ΓIt traces.

This proof is inspired by that from Gafni and Rajsbaum [7]. The key idea is the sequence of simulated
reads (which we define in the proof later) recorded in the trace from ΓIt forms a relation with the reads
performed by some trace in ΓAlt.

Proposition 4.13.1 (Non-layered ΓAlt to layered ΓIt proposition). Given task description Θ and solv-
ability property 𝑃, if Θ is 𝑃-solvable under the non-layered model for ΓAlt traces, then Θ is also
𝑃-solvable under the layered model for ΓIt traces.

Proof. Assume the protocol (V, 𝜋) 𝑃-solves Θ under the non-layered model for ΓAlt traces. We define
V′ to be the set freely generated by the binary operator {_, _}, the 4-ary operator ⟨_, _, _, _⟩, and the
𝑛-ary operator (_, . . . , _) on V ∪ N.

We define v and c as functions defined by the first and second projections of input values of the {}
tuple or returning ⊥ or 0, respectively, instead.

We also define val, arr, rnd, srnd as functions defined by the first, second, and third projections of
input values of the ⟨⟩ tuple, or returning 𝑥, ({⊥, 0}, . . . , {⊥, 0}), 1, and 1, respectively, when given as
input otherwise.

Given a vector 𝑚 : V′𝑛, we define the | _ | as follows:

| 𝑚 |=
∑︁

0≤𝑖≤𝑛−1
c(𝑚𝑖)

Given a vector 𝑚 : V′𝑛 where the 𝑖-projection of 𝑚 is of the form (𝑚 [𝑖] [0], . . . , 𝑚 [𝑖] [𝑛 − 1]), we
define the top and clock functions as follows:

top(𝑚) = (𝑚′0 . . . 𝑚
′
𝑛−1)

where 𝑚′𝑖 = v(𝑚 [ 𝑗] [𝑖]) for some 𝑗 such that c(𝑚 [ 𝑗] [𝑖]) ≥ c(𝑚 [𝑘] [𝑖])for all 𝑘
clock(𝑚) = (𝑚′0 . . . 𝑚

′
𝑛−1)

where 𝑚′𝑖 = c(𝑚 [ 𝑗] [𝑖]) for some 𝑗 such that c(𝑚 [ 𝑗] [𝑖]) ≥ c(𝑚 [𝑘] [𝑖])for all 𝑘

We define a protocol (V′, 𝜋′) as follows:
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𝜋′𝑤𝑖
(𝑥, 𝑦) =

{
𝑦 if 𝑥 ∈ O⊥
arr(𝑥) [𝑖 ← {𝜋𝑤𝑖

(𝑥,⊥), srnd(x)}] otherwise

𝜋′𝑟𝑖 (𝑥, 𝑚) =



𝑥 if 𝑥 ∈ O⊥


𝜋𝑟𝑖 (𝑥, top(𝑚)) if 𝜋𝑟𝑖 (𝑥, top(𝑚)) ∈ O⊥
⟨𝜋𝑟𝑖 (𝑥, top(𝑚)), top(𝑚),
rnd(𝑥) + 1, srnd(𝑚) + 1⟩ otherwise

| top(𝑚) |= 𝑟

⟨val(𝑥), top(𝑚),
rnd(𝑥) + 1, srnd(𝑥)⟩ otherwise

otherwise

We claim that (V′, 𝜋′) 𝑃-solves Θ under the layered model for ΓIt traces.

Consider arbitrary trace 𝑇 ∈ ΓIt. By the iterated property, 𝑇 can be written as 𝑇0𝑇1𝑇2 . . . , where 𝑇𝑖
contains all actions of round number 𝑖 for 𝑖 ∈ N.

Lemma 4.13.2. For all 𝑗 ∈ N, 𝑙input ∈ I𝑛⊥, let 𝑙 = fstJJ𝑇0 . . . 𝑇𝑗−1KK𝜋′ (𝑙input, _𝑘.⊥𝑛), for each 𝑖 ∈ [𝑛],
one of the following cases is true:

1. 𝑙𝑖 ∈ O⊥

2. 𝑗 = 0 and 𝑙𝑖 ∈ I

3. 𝑙𝑖 = ⟨𝑎, 𝑏, 𝑗 + 1, 𝑐⟩ for some 𝑎 ∈ V′ \ O⊥, 𝑏 = (𝑏0, . . . 𝑏𝑛−1) ∈ V′, 𝑐 ∈ N where 𝑗 ≤| 𝑏 | and
c(𝑏𝑖) ≤ 𝑐 ≤ c(𝑏𝑖) + 1

4. 𝑑𝑖 ∈ 𝑇0 . . . 𝑇𝑗−1

The above can be proven by induction on 𝑗 ∈ N.

When executing the trace segment𝑇𝑗 for 𝑗 ∈ N, for all non-dead process and non-committed processes,
if during the read phase the condition | top(𝑚) | is satisfied, we say it executes a simulated read.

Lemma 4.13.3. For all 𝑗 ∈ N, all processes that are not committed and are non-dead that executed a
simulated read in the 𝑇𝑗−1 round does so with the same top(𝑚). Let 𝑐 = clock(𝑚) with that value of
𝑚. In addition, for all uncommitted processes not executing a simulated read in that 𝑇𝑗−1 round, if we
let 𝑐′ = clock(𝑚′), we must have 𝑐 ≤ 𝑐′ when compared index-wise.

Let the clock vector clock(m) seen by each non-committed and non-dead process 𝑖 for the round 𝑇𝑗−1
by 𝑐𝑖. Depending on the order of reads in 𝑇𝑗−1, it is not difficult to see that the 𝑐𝑖’s form a linear
preorder when compared index-wise. Note a simulated read is only executed if | 𝑐𝑖 |= 𝑗 . At the same
time we know that by lemma 4.13.2, we have 𝑗 ≤| 𝑐𝑖 | for all 𝑖 ∈ [𝑛]. Thus only the processes reading
the bottom element of the 𝑐𝑖 preorder can execute a simulated write.

Lemma 4.13.4. For all 𝑗 ∈ N, if executing 𝑇0 . . . 𝑇𝑗−1, there exists a non-empty set of non-dead and
non-committed processes, there exists 𝑘 ≥ 𝑗 such that, a process dies in 𝑇𝑘 or executed a simulated
read.

This follows easily from lemma 4.13.2. When no processes dies or executes a simulated read, the
read memory clock clock(𝑚) remains unchanged. As the rnd of the local memory each non-dead
non-committed process increases after each 𝑇𝑗 , eventually one will have to execute a simulated write.
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For all 𝑗 ∈ N, 𝑙initial ∈ I𝑛⊥, consider the trace 𝑇0 . . . 𝑇𝑗−1, let the increasing vector clocks clock(𝑚)
of the executed simulated reads be 𝑐1 . . . 𝑐𝑘 for some 𝑘 ∈ N. Let 𝑐0 be the all 0 𝑛-vector. For all
𝑝 ∈ [𝑘 + 1], let 𝑅𝑝 be the list of read actions for all processes executing a simulated read with the
vector clock 𝑐𝑝, and 𝑊𝑝 be a list of write actions for all processes 𝑖 where 𝑐𝑝−1 [𝑖] < 𝑐𝑝 [𝑖]. We define
the trace 𝑇 ′

𝑗
= 𝑊1𝑅1 . . .𝑊𝑘𝑅𝑘 .

Let 𝑙 = fstJJ𝑇0 . . . 𝑇𝑗−1KK𝜋′ (𝑙initial, _𝑘.⊥𝑛) and 𝑙′ = fstJ𝑇 ′
𝑗
K𝜋 (𝑙initial,⊥𝑛).

Lemma 4.13.5. For all 𝑗 ∈ N, 𝑙initial ∈ I𝑛⊥, let 𝑙 = fstJJ𝑇0 . . . 𝑇𝑗−1KK𝜋′ (𝑙initial, _𝑘.⊥𝑛) and 𝑙′ =

fstJ𝑇 ′
𝑗
K𝜋 (𝑙initial,⊥𝑛), for all 𝑖 ∈ [𝑛], one of the following cases is true:

1. 𝑙′[𝑖] = 𝑙 [𝑖] ∈ I ∪ O⊥

2. 𝑙 [𝑖] = ⟨𝑙′[𝑖], 𝑎, 𝑏, 𝑐⟩ for some 𝑎, 𝑏, 𝑐 ∈ V′

This is not difficult to observe by induction.

Lemma 4.13.6.
⊔

𝑗 𝑇
′
𝑗

is alternating.

This is true because whenever a process 𝑖 executes a simulated read twice consecutively, the 𝑖-th
element of the clock it observes is increased by exactly one. Thus, there is only one read appearing
between each write of the same process.

Lemma 4.13.7.
⊔

𝑗 𝑇
′
𝑗

is finite.

Assume the contrary, that
⊔

𝑗 𝑇
′
𝑗

is infinite. This means there exists some process 𝑖 that executes an
infinite number of simulated reads. For all process 𝑘 in

⊔
𝑗 𝑇
′
𝑗
that do not die and do not appear infinitely,

we add a 𝑑𝑘 action behind the last 𝑘-th action appearing in the trace. Let this new trace be𝑇new. Note that
𝑇new is in ΓAlt. Moreover, 𝑖 does not die in 𝑇new. By assumption, there exists some prefix 𝑇prefix of 𝑇new
such that 𝑃(𝑙initial, fstJ𝑇prefixK𝜋 (𝑙initial,⊥𝑛) [dead(𝑇new) ← ⊥], dead(𝑇new),Θ). It must thus be the case
that fstJ𝑇prefixK𝜋 (𝑙initial,⊥𝑛) [𝑖] ∈ O⊥. By using the Constant local memory lemma and the Committed
value lemma implicitly, one can easily find a 𝑗 ′ ∈ N such that fstJ𝑇 ′

𝑗 ′K𝜋 (𝑙initial,⊥𝑛) [𝑖] ∈ O⊥. By
lemma 4.13.5, we must have fstJ𝑇0 . . . 𝑇𝑗 ′−1K𝜋 (𝑙initial, _𝑘.⊥𝑛) [𝑖] ∈ O⊥. This is a contradiction, because
process 𝑖 cannot execute any more simulated reads after 𝑇0 . . . 𝑇𝑗 ′−1 since it has already committed.

Lemma 4.13.8. For all 𝑖 ∈ [𝑛], fstJ
⊔

𝑗 𝑇
′
𝑗
K𝜋 (𝑙initial,⊥𝑛) [dead(𝑇) ← ⊥][𝑖] ∈ O⊥.

Since
⊔

𝑗 𝑇
′
𝑗
is finite,

⊔
𝑗 𝑇
′
𝑗
= 𝑇 ′

𝑗 ′ for some 𝑗 ′ ∈ N. Assume the contrary of the lemma, by lemma 4.13.5,
it must be the case that there exists some processes where after executing 𝑇0 . . . 𝑇𝑗 ′−1, it has not
committed and will never die in trace 𝑇 . However by lemma 4.13.4, one of those processes must
execute another simulated read in future rounds, thus extending

⊔
𝑗 𝑇
′
𝑗

and thus a contradiction.

Let 𝑊 be the trace containing write actions of all processes not in dead(𝑇). Let 𝑅 be the trace
containing read actions of all processes not in dead(𝑇). Let 𝐷 be the trace containing dead actions
of all process in dead(𝑇). Let 𝑇ult = (

⊔
𝑗 𝑇
′
𝑗
)𝐷𝑊𝑅𝑊𝑅 . . . = 𝑇 ′

𝑗 ′𝐷𝑊𝑅𝑊𝑅 . . . . Note that 𝑇ult ∈ ΓAlt.
By assumption, there exists a prefix 𝑇 ′ult of 𝑇ult satisfying 𝑃(𝑙initial, fstJ𝑇 ′ultK𝜋 (𝑙initial,⊥𝑛) [dead(𝑇ult ←
⊥)], dead(𝑇ult),Θ).

We now perform a case analysis:

• 𝑇 ′ult ≤ 𝑇 ′
𝑗 ′: By the Trace extension lemma and lemma 4.13.5, we have

𝑃(𝑙initial, fstJJ𝑇0 . . . 𝑇𝑗 ′−1KK𝜋′ (𝑙initial, _𝑘.⊥𝑛) [dead(𝑇 ← ⊥)], dead(𝑇),Θ)

as required.
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• 𝑇 ′
𝑗 ′ ≤ 𝑇 ′ult: By the Committed value lemma and lemma 4.13.8, we have:

fstJ𝑇 ′𝑗 ′K𝜋 (𝑙initial,⊥𝑛) [dead(𝑇) ← ⊥] = fstJ𝑇 ′ultK𝜋 (𝑙initial,⊥𝑛) [dead(𝑇) ← ⊥]

By lemma 4.13.5, we then similarly have

𝑃(𝑙initial, fstJJ𝑇0 . . . 𝑇𝑗 ′−1KK𝜋′ (𝑙initial, _𝑘.⊥𝑛) [dead(𝑇 ← ⊥)], dead(𝑇),Θ)

as required.

□

4.14 Fundamental Theorem Summary

Here, we accomplished the second task of this report, i.e. proving the Fundamental Theorem of
Asynchronous Distributed Models. We first presented a bird’s-eye view of our proof before rigorously
proving each intermediate reduction. This theorem is the first result to show that the models studied by
GMT and HKR are equivalent in solvability power, meaning that results related to solvability for one
model can also be used to reason about the other, e.g. the Asynchronous Computability Theorem.
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Chapter 5

Conclusion

5.1 Summary

Let us take a step back and admire our work.

This report presents the first steps in creating a theory unifying HKR’s and GMT’s work on asyn-
chronous distributed systems. The flexibility of the framework allows us to reason about the task solv-
ability of distributed tasks for different kinds of protocols (e.g. full-disclosure protocols, 𝛿-protocols),
execution traces generated by different communication primitives (e.g. immediate snapshot traces,
iterated traces), and task solvability properties (e.g. 𝑃GMT and 𝑃HKR), all under the same system.

As a significant proof of concept, we proved the Fundamental Theorem of Asynchronous Dis-
tributed Models, a new result illustrating an equivalence in task solvability between one of GMT’s
most general distributed models, i.e. the non-layered model for possibly infinite ΓFair traces, and one
of HKR’s most specific and interesting distributed models, i.e. the layered model for finite Γ𝑘-It+IS
traces via a full-information 𝛿-protocol. This theorem thus unites two separate lines of research,
allowing us to share the results of task solvability of one model with the other. Importantly, the Asyn-
chronous Computability Theorem can be extended to also capture the solvability power of GMT’s
model. Our fundamental theorem is solvability property-agnostic, meaning it holds true for both
GMT’s and HKR’s solvability property, which makes the proofs more powerful, albeit significantly
more complicated.

5.2 Future Work

We examine various directions and open questions for continuing the project.

5.2.1 GMT’s Three Propositions

In GMT’s paper, three propositions on task solvability are stated without proofs. The first proposition
follows easily as a corollary of the Fundamental Theorem of Asynchronous Distributed Models in this
report.

The second proposition is not true for all solvability properties 𝑃, as one can show that we can solve
consensus with HKR’s solvability property 𝑃HKR (see subsection 2.2.5), which contradicts the FLP
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result [4]. However, the author conjectures that the proposition is true at least for GMT’s solvability
property 𝑃GMT.
Conjecture 1. Given task description Θ, Θ is 𝑃GMT-solvable under the non-layered model for ΓFair
traces iff Θ is 𝑃GMT-solvable under the non-layered model for ΓIt traces.

The author conjectures that the third proposition is true for all solvability properties. To prove it, it
suffices to show the following, which can be seen as the non-layered version of the Layered Γ𝑘-It+IS to
layered Γ𝑘 ′-It proposition (see section 4.10):
Conjecture 2. Given task description Θ and solvability property 𝑃, if Θ is 𝑃-solvable under the non-
layered model Γ𝑘-It+IS traces for some 𝑘 ∈ N, then Θ is also 𝑃-solvable under the non-layered model
for Γk’-It traces for some 𝑘′ ∈ N.

The author believes that the proof for the Layered Γ𝑘-It+IS to layered Γ𝑘 ′-It proposition can be lifted to
work for the non-layered version.

5.2.2 GMT’s Protocol

The definition of a protocol in this report differs from GMT’s definition slightly. In particular, GMT’s
definition of a protocol does not have the Write After Commit condition. Without this condition,
some proofs are invalid, for example that of the Non-layered Γ𝑘-Alt to non-layered ΓAlt proposition (see
section 4.6).

The author conjectures that even without the Write After Commit condition, the statement of all theo-
rems is still true, though their proofs might require more sophisticated reasoning with the topological
structure produced by the protocol.
Conjecture 3. The Fundamental Theorem of Asynchronous Distributed Models still holds if we
consider protocols without the Write After Commit condition.

5.2.3 GMT’s Solvability Property

It has been shown that distributed tasks that are 𝑃HKR-solvable possess nice geometric properties,
as illustrated in the Asynchronous Computability Theorem, which we present in the form of our
framework:

Theorem 5.2.1 (Asynchronous Computability Theorem [10]). Given distributed task Θ, Θ is 𝑃HKR-
solvable under the non-layered model for ΓFair traces if and only if there exists a chromatic subdivision
𝜎 of the simplicial complex I𝑛⊥ and a color-preserving simplicial map ` : 𝜎(I𝑛⊥) → O𝑛

⊥, such that for
each vertex 𝑠 ∈ 𝜎(I𝑛⊥), `(𝑠) ∈ Θ(𝑠′), where 𝑠′ is the unique smallest simplex in I𝑛⊥ that contains 𝑠.

The author conjectures that one can find a similar (most likely simpler) geometric property to charac-
terize tasks that are 𝑃GMT solvable.
Conjecture 4. There exists a geometric characterization of all task descriptions 𝑃GMT-solvable under
the non-layered model for ΓFair traces.

5.2.4 The Category-theoretic Perspective of Task Solvability

Originally, the author aimed to examine whether category theory provides tools for us to understand
or prove various theorems on task solvability, e.g. the Asynchronous Computability Theorem. The
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project, however, deviated from this original plan when we realized that not enough work has been
done to rigorously structure various results on distributed task solvability under a unified framework.

The author hopes to build upon their framework, and rewrite various proofs and results under the lens
of category theory, so that the proofs can be more easily understood and generalized.
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Appendix A

Useful Lemmas

A.1 Committed Value Lemma

Lemma A.1.1 (Committed value lemma). For all protocols (V, 𝜋), 𝑙, 𝑚 ∈ V𝑛, finite trace 𝑇∈ A∗+𝜔,
and 𝑖 ∈ [𝑛], if we have 𝑙 [𝑖] ∈ O⊥, then fst(J𝑇K𝜋 (𝑙, 𝑚)) [𝑖] = 𝑙 [𝑖]. We have the same result if we replace
all JK with JJKK.

Proof. We prove by strong induction on length of 𝑇 for all 𝑙, 𝑚.

• 𝑇 = 𝜖: We then have J𝑇K𝜋 = id, and the result follows trivially.

• 𝑇 = 𝑤 𝑗 · 𝑇 ′: We have

fst(J𝑤 𝑗 · 𝑇K𝜋 (𝑙, 𝑚)) [𝑖]
= fst(J𝑇K𝜋 (𝑙, 𝑚 [ 𝑗 ← 𝜋𝑤 𝑗

(𝑙 𝑗 , 𝑚 𝑗 )])) [𝑖] (definition)
= 𝑙 [𝑖] (induction hypothesis)

• 𝑇 = 𝑟𝑖 · 𝑇 ′: We have

fst(J𝑟𝑖 · 𝑇K𝜋 (𝑙, 𝑚)) [𝑖]
= fst(J𝑇K𝜋 (𝑙 [𝑖 ← 𝜋𝑟𝑖 (𝑙𝑖, 𝑚)], 𝑚)) [𝑖] (definition)
= fst(J𝑇K𝜋 (𝑙 [𝑖 ← 𝑙𝑖], 𝑚)) [𝑖] (Read After Commit)
= 𝑙 [𝑖] (induction hypothesis)

• 𝑇 = 𝑟 𝑗 · 𝑇 ′ where 𝑗 ≠ 𝑖: We have

fst(J𝑟 𝑗 · 𝑇K𝜋 (𝑙, 𝑚)) [𝑖]
= fst(J𝑇K𝜋 (𝑙 [ 𝑗 ← 𝜋𝑟 𝑗 (𝑙 𝑗 , 𝑚)], 𝑚)) [𝑖] (definition)
= 𝑙 [𝑖] (induction hypothesis)

• 𝑇 = 𝑑 𝑗 · 𝑇 ′: We have

fst(J𝑑 𝑗 · 𝑇K𝜋 (𝑙, 𝑚)) [𝑖]
= fst(Jproj¬ 𝑗 (𝑇)K𝜋 (𝑙, 𝑚)) [𝑖] (definition)
= 𝑙 [𝑖] (induction hypothesis)

The proof is similar for the layered model. □
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A.2 Trace Extension Lemma

Lemma A.2.1 (Trace extension lemma). For all distributed tasks Θ, protocols (V, 𝜋), 𝑙 ∈ V𝑛, traces
𝑇 , solvability properties 𝑃, if we have 𝑃(𝑙, fst(J𝑇 ′K𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ) for some
finite prefix 𝑇 ′ of 𝑇 , for all finite prefixes 𝑇 ′′ of 𝑇 satisfying 𝑇 ′ ≤ 𝑇 ′′, we have:

𝑃(𝑙, fst(J𝑇 ′′K𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ)

We have a similar result for the layered model version.

Proof. It suffices to prove that fst(J𝑇 ′K𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥] = fst(J𝑇 ′′K𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥].
Let 𝑇 ′′′ be the trace such that 𝑇 ′ · 𝑇 ′′′ = 𝑇 ′′.

Consider 𝑖 ∈ [𝑛],

• Case 1: 𝑖 ∈ dead(𝑇): we must have

fst(J𝑇 ′K𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥][𝑖]
= ⊥
= fst(J𝑇 ′′K𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥][𝑖]

• Case 2: 𝑖 ∉ dead(𝑇): Note we must have fst(J𝑇 ′K𝜋 (𝑙,⊥𝑛)) [𝑖] ∈ O⊥ by inspecting the type of 𝑃
(see Definition 2.2.6).
Also observe that for Jproj¬dead(𝑇 ′)𝑇

′′′K𝜋 ◦ J𝑇 ′K𝜋 = J𝑇 ′′K𝜋, which can be proven by induction.

fst(J𝑇 ′K𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥][𝑖]
= fst(J𝑇 ′K𝜋 (𝑙,⊥𝑛)) [𝑖]
= fst(Jproj¬dead(𝑇 ′)𝑇

′′′K𝜋) (fst(J𝑇 ′K𝜋 (𝑙,⊥𝑛)), snd(J𝑇 ′K𝜋 (𝑙,⊥𝑛)) [𝑖] (Committed value lemma)
= fst((Jproj¬dead(𝑇 ′)𝑇

′′′K𝜋 ◦ J𝑇 ′K𝜋) (𝑙,⊥𝑛)) [𝑖]
= fst(J𝑇 ′′K𝜋 (𝑙,⊥𝑛)) [𝑖] (By above property)
= fst(J𝑇 ′′K𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥][𝑖]

The proof is similar for the layered model. □
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Appendix B

Full Proof of the Full-disclosure Proposition

Proposition B.0.1 (Full-disclosure proposition). For any distributed task Θ, trace property Γ, and
solvability property 𝑃, Θ is 𝑃-solvable under the non-layered model for Γ traces if and only if there
exists a full-disclosure protocol 𝜋 that 𝑃-solves Θ under the non-layered model for Γ traces.

Proof. (⇒) Assume the protocol (V, 𝜋) 𝑃-solves Θ under the non-layered model for Γ traces. We
define the full-disclosure protocol (V, 𝜋′) as follows:

𝜋′𝑤𝑖
(𝑥, 𝑦) =

{
𝑥 if 𝑥 ∉ O⊥

𝑦 otherwise
𝜋′𝑟𝑖 (𝑥, 𝑚) = 𝜋𝑟𝑖 (𝑥, (𝜋𝑤0 (𝑚0,⊥), ..., 𝜋𝑤𝑛−1 (𝑚𝑛−1,⊥)))

It is trivial to see that 𝜋′ is a well-defined protocol.

Lemma B.0.2. For all 𝑙, 𝑚, 𝑚′ ∈ V𝑛, satisfying 𝑚 [𝑖] = 𝜋𝑤𝑖
(𝑚′[𝑖],⊥) for all 𝑖 ∈ [𝑛], for all traces 𝑇 ,

we have
fst(J𝑇K𝜋 (𝑙, 𝑚)) = fst(J𝑇K𝜋′ (𝑙, 𝑚′))

and for all 𝑖 ∈ [𝑛]
snd(J𝑇K𝜋 (𝑙, 𝑚)) [𝑖] = 𝜋𝑤𝑖

(snd(J𝑇K𝜋′ (𝑙, 𝑚′)) [𝑖],⊥)
.

We prove this by strong induction on the length of 𝑇 .

• 𝑇 = 𝜖: We have J𝑇K𝜋 = J𝑇K𝜋′ = id, and the equations follow from assumptions.

• 𝑇 = 𝑤𝑖 · 𝑇 ′: We have

fst(J𝑤𝑖 · 𝑇 ′K𝜋 (𝑙, 𝑚))
= fst(J𝑇K𝜋 (𝑙, 𝑚)) (Constant local memory lemma)
= fst(J𝑇K𝜋′ (𝑙, 𝑚′)) (Strong induction)
= fst(J𝑤𝑖 · 𝑇K𝜋′ (𝑙, 𝑚′)) (Constant local memory lemma)

Similarly, for all 𝑗 ∈ [𝑛], we perform a case split:
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– 𝑙𝑖 ∉ O⊥:

snd(J𝑤𝑖 · 𝑇 ′K𝜋 (𝑙, 𝑚)) [ 𝑗]
= snd(J𝑇K𝜋 (𝑙, 𝑚 [𝑖 ← 𝜋𝑤𝑖

(𝑙𝑖, 𝑚𝑖)])) [ 𝑗] (definition)
= snd(J𝑇K𝜋 (𝑙, 𝑚 [𝑖 ← 𝜋𝑤𝑖

(𝑙𝑖,⊥)])) [ 𝑗] (Global Memory Irrelevance)
= 𝜋𝑤𝑖

(snd(J𝑇K𝜋′ (𝑙, 𝑚′[𝑖 ← 𝑙𝑖])) [ 𝑗],⊥) (strong induction)
= 𝜋𝑤𝑖

(snd(J𝑇K𝜋′ (𝑙, 𝑚′[𝑖 ← 𝜋′𝑤𝑖
(𝑙𝑖,⊥)])) [ 𝑗],⊥) (definition of 𝜋′)

= 𝜋𝑤𝑖
(snd(J𝑤𝑖 · 𝑇K𝜋′ (𝑙, 𝑚′)) [ 𝑗]) (definition of 𝜋′)

– 𝑙𝑖 ∈ O⊥:

snd(J𝑤𝑖 · 𝑇 ′K𝜋 (𝑙, 𝑚)) [ 𝑗] = snd(J𝑇K𝜋 (𝑙, 𝑚 [𝑖 ← 𝜋𝑤𝑖
(𝑙𝑖, 𝑚𝑖)])) [ 𝑗] (definition)

= snd(J𝑇K𝜋 (𝑙, 𝑚 [𝑖 ← 𝑚𝑖])) [ 𝑗] (Write After Commit)
= snd(J𝑇K𝜋 (𝑙, 𝑚)) [ 𝑗]
= 𝜋𝑤𝑖

(snd(J𝑇K𝜋′ (𝑙, 𝑚′)) [ 𝑗],⊥) (strong induction)
= 𝜋𝑤𝑖

(snd(J𝑇K𝜋′ (𝑙, 𝑚′[𝑖 ← 𝜋𝑤𝑖
(𝑙𝑖, 𝑚′𝑖)])) [ 𝑗],⊥) (Write After Commit)

= 𝜋𝑤𝑖
(snd(J𝑤𝑖 · 𝑇K𝜋′ (𝑙, 𝑚′)) [ 𝑗]) (definition of 𝜋′)

• 𝑇 = 𝑟𝑖 · 𝑇 ′: We have

fst(J𝑟𝑖 · 𝑇 ′K𝜋 (𝑙, 𝑚)) = fst(J𝑇K𝜋 (𝑙 [𝑖 ← 𝜋𝑟𝑖 (𝑙𝑖, 𝑚)], 𝑚)) (definition)
= fst(J𝑇K𝜋′ (𝑙 [𝑖 ← 𝜋𝑟𝑖 (𝑙𝑖, 𝑚)], 𝑚′)) (strong induction)
= fst(J𝑇K𝜋′ (𝑙 [𝑖 ← 𝜋𝑟𝑖 (𝑙𝑖, (𝜋𝑤0 (𝑚′0), ..., 𝜋𝑤𝑛−1 (𝑚′𝑛−1)))], 𝑚

′)) (definition of 𝑚′)
= fst(J𝑇K𝜋′ (𝑙 [𝑖 ← 𝜋′𝑟𝑖 (𝑙𝑖, 𝑚

′)], 𝑚′)) (definition of 𝜋′)
= fst(J𝑟𝑖 · 𝑇K𝜋′ (𝑙, 𝑚′)) (definition of 𝜋′)

Similarly, for all 𝑗 ∈ [𝑛]

snd(J𝑟𝑖 · 𝑇 ′K𝜋 (𝑙, 𝑚)) [ 𝑗]
= snd(J𝑇K𝜋 (𝑙 [𝑖 ← 𝜋𝑟𝑖 (𝑙𝑖, 𝑚)], 𝑚)) [ 𝑗] (definition)
= 𝜋𝑤𝑖

(snd(J𝑇K𝜋′ (𝑙 [𝑖 ← 𝜋𝑟𝑖 (𝑙𝑖, 𝑚)], 𝑚′)) [ 𝑗]) (strong induction)
= 𝜋𝑤𝑖

(snd(J𝑇K𝜋′ (𝑙 [𝑖 ← 𝜋𝑟𝑖 (𝑙𝑖, (𝜋𝑤0 (𝑚′0,⊥), ..., 𝜋𝑤𝑛−1 (𝑚′𝑛−1,⊥)))], 𝑚
′)) [ 𝑗]) (definition)

= 𝜋𝑤𝑖
(snd(J𝑇K𝜋′ (𝑙 [𝑖 ← 𝜋′𝑟𝑖 (𝑙𝑖, 𝑚

′)], 𝑚′)) [ 𝑗]) (definition)
= 𝜋𝑤𝑖

(snd(J𝑟𝑖 · 𝑇K𝜋′ (𝑙, 𝑚′)) [ 𝑗]) (definition of 𝜋′)

• 𝑇 = 𝑑𝑖 · 𝑇 ′: We have

fst(J𝑑𝑖 · 𝑇 ′K𝜋 (𝑙, 𝑚)) = fst(Jproj¬𝑖 (𝑇 ′)K𝜋 (𝑙, 𝑚)) (definition)
= fst(Jproj¬𝑖 (𝑇 ′)K𝜋′ (𝑙, 𝑚)) (strong induction)
= fst(J𝑑𝑖 · 𝑇 ′K𝜋′ (𝑙, 𝑚)) (definition)

Similarly, for all 𝑗 ∈ [𝑛]

snd(J𝑑𝑖 · 𝑇 ′K𝜋 (𝑙, 𝑚)) [ 𝑗] = snd(Jproj¬𝑖 (𝑇)K𝜋 (𝑙, 𝑚)) [ 𝑗] (definition)
= 𝜋𝑤𝑖

(snd(Jproj¬𝑖 (𝑇 ′)K𝜋′ (𝑙, 𝑚′)) [ 𝑗],⊥) (strong induction)
= 𝜋𝑤𝑖

(snd(J𝑑𝑖 · 𝑇 ′K𝜋′ (𝑙, 𝑚′)) [ 𝑗],⊥) (definition)
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Now note that ⊥𝑛 [𝑖] = ⊥ = 𝜋𝑤𝑖
(⊥𝑛 [𝑖],⊥). Consider arbitrary 𝑙 ∈ I𝑛⊥ and trace 𝑇 ∈ Γ. By assumption,

there exists finite prefix 𝑇 ′ of 𝑇 satisfying 𝑃(𝑙, fst(J𝑇 ′K𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ). By
lemma B.0.2, we now also have 𝑃(𝑙, fst(J𝑇 ′K𝜋′ (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ). Thus concluding
our proof that the full-disclosure protocol 𝜋′ 𝑃-solves Θ under the non-layered model for Γ traces.

(⇐) This direction is trivial because any full-disclosure protocol is also a protocol. □
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Appendix C

Full Proof of the Non-layered ΓNrs to
Non-layered ΓValid Proposition

Proposition C.0.1 (Non-layered ΓNrs to non-layered ΓValid proposition). Given task description Θ and
solvability property 𝑃, if Θ is 𝑃-solvable under the non-layered model for ΓNrs traces, then Θ is also
𝑃-solvable under the non-layered model for ΓValid traces.

Proof. Suppose Θ is 𝑃-solvable under the non-layered model for ΓNrs traces. By the Full-disclosure
proposition (see subsection 3.5.1), there exists a full-disclosure protocol (V, 𝜋) that 𝑃-solves Θ under
the non-layered model for ΓNrs traces.

We construct a protocol (V, 𝜋′) as follows:

𝜋′𝑤𝑖
(𝑥, 𝑦) = 𝜋𝑤𝑖

(𝑥, 𝑦)

𝜋′𝑟𝑖 (𝑥, 𝑚) =
{
𝑥 if 𝑥 ∈ O⊥ or 𝑚𝑖 = ⊥
𝜋𝑟𝑖 (𝑥, 𝑚) otherwise

We claim that (V, 𝜋′) 𝑃-solves Θ under the non-layered model for ΓValid traces.

Consider arbitrary trace 𝑇 ∈ ΓValid. We can always split 𝑇 into 𝑇1 ·𝑇2 for some finite trace 𝑇1 and trace
𝑇2 where for all 𝑖 ∈ [𝑛], 𝑤𝑖 ∈ 𝑇1 or 𝑑𝑖 ∈ 𝑇2. This is because 𝑇 must contain at least one 𝑤𝑖 or 𝑑𝑖 for
each 𝑖.

Consider the following rewriting system with a family of rules (𝑅𝑖)𝑖 for each 𝑖 ∈ [𝑛]:

𝑅𝑖 : 𝑇𝑎𝑟𝑖𝑇𝑏 ⇒ 𝑇𝑎𝑇𝑏 where 𝑇𝑎 does not contain 𝑤𝑖, 𝑑𝑖, or 𝑟𝑖

Lemma C.0.2. The above rewriting system is terminating on all finite traces.

This is obvious since the single rule decreases the length of a trace by one. Since the length of all
finite traces is finite, we can only apply the rule finitely many times.

Lemma C.0.3. For all 𝑖 ∈ [𝑛], the rewriting system only containing 𝑅𝑖 is confluent on all finite traces.

This is obvious since we can perform the rewrite on at most one place in the trace. If there are multiple
𝑟𝑖 actions, we can only remove the first 𝑟𝑖 (given no 𝑤𝑖 and 𝑑𝑖 actions are before it).

Let 𝑓 be the function which takes in a finite trace, and returns the trace after repeatedly applying 𝑅𝑖

until it is irreducible in order of 𝑖.
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Lemma C.0.4. dead( 𝑓 (𝑇1) · 𝑇2) = dead(𝑇1 · 𝑇2)

This is obvious because we do not remove nor add 𝑑𝑖 for all 𝑖 ∈ [𝑛] in the rewriting system.

Lemma C.0.5. 𝑓 (𝑇1) · 𝑇2 ∈ ΓNrs

We prove this by considering proj𝑖 ( 𝑓 (𝑇1) · 𝑇2) for each 𝑖 ∈ [𝑛]. Note that only 𝑅𝑖 might affect the
projection, and not any other 𝑅 𝑗 where 𝑖 ≠ 𝑗 . Notice first that 𝑅𝑖 repeatedly removes the first 𝑟𝑖 if it is
the first action in the projection. After termination, it must be the case that the first action must not be
a 𝑟𝑖. Moreover the rule 𝑅𝑖 preserves validity of the trace.

Lemma C.0.6. For all 𝑙 ∈ V𝑛, J 𝑓 (𝑇1)K𝜋′ (𝑙,⊥𝑛) = J𝑇1K𝜋′ (𝑙,⊥𝑛)

We prove this by induction on the number of rewriting steps applied.

• Base case: If no steps are applied, 𝑓 (𝑇1) = 𝑇1, and the equation is trivially satisfied.

• Inductive step: It suffices to prove that if 𝑇1 = 𝑇𝑎𝑟𝑖𝑇𝑏 where 𝑇𝑎 does not contain 𝑤𝑖, 𝑑𝑖, or 𝑟𝑖,
J𝑇𝑎𝑟𝑖𝑇𝑏K𝜋′ = J𝑇𝑎𝑇𝑏K𝜋′ .
We have

J𝑇𝑎𝑟𝑖𝑇𝑏K𝜋′ (𝑙,⊥𝑛)
= (J𝑟𝑖𝑇𝑏K𝜋′ ◦ J𝑇𝑎K𝜋′) (𝑙, 𝑚) (Compositionality of valid traces)
= J𝑟𝑖𝑇𝑏K𝜋′ (fst(J𝑇𝑎K𝜋′ (𝑙,⊥𝑛)), snd(J𝑇𝑎K𝜋′ (𝑙,⊥𝑛)))
= J𝑇𝑏K𝜋′ (fst(J𝑇𝑎K𝜋′ (𝑙,⊥𝑛))
[𝑖 ← 𝜋′𝑟𝑖 (fst(J𝑇𝑎K𝜋′ (𝑙,⊥

𝑛)) [𝑖], snd(J𝑇𝑎K𝜋′ (𝑙,⊥𝑛)))],
snd(J𝑇𝑎K𝜋′ (𝑙,⊥𝑛)))

Notice that from the Constant global memory lemma for non-layered models, we have
snd(J𝑇𝑎K𝜋′ (𝑙,⊥𝑛)) [𝑖] = ⊥𝑛 [𝑖] = ⊥.
Thus we have

J𝑇𝑎𝑟𝑖𝑇𝑏K𝜋′ (𝑙,⊥𝑛)
= J𝑇𝑏K𝜋′ (fst(J𝑇𝑎K𝜋′ (𝑙,⊥𝑛))
[𝑖 ← fst(J𝑇𝑎K𝜋′ (𝑙,⊥𝑛)) [𝑖]],
snd(J𝑇𝑎K𝜋′ (𝑙,⊥𝑛))) (definition of 𝜋′)

= J𝑇𝑏K𝜋′ (fst(J𝑇𝑎K𝜋′ (𝑙,⊥𝑛)), snd(J𝑇𝑎K𝜋′ (𝑙,⊥𝑛)))
= (J𝑇𝑏K𝜋′ ◦ J𝑇𝑎K𝜋′) (𝑙, 𝑚)
= J𝑇𝑎𝑇𝑏K𝜋′ (𝑙,⊥𝑛) (Compositionality of valid traces)

Lemma C.0.7. For all finite valid traces𝑇 , 𝑙 ∈ V𝑛, 𝑖 ∈ [𝑛], where 𝑤𝑖 ∈ 𝑇 , if snd(J𝑇K𝜋′ (𝑙,⊥𝑛)) [𝑖] = ⊥,
then fst(J𝑇K𝜋′ (𝑙,⊥𝑛)) [𝑖] = ⊥.

This can be shown easily by induction on length of 𝑇 .

Lemma C.0.8. For all finite prefixes 𝑇 ′ of ( 𝑓 (𝑇1)𝑇2), 𝑙 ∈ I𝑛⊥, we have J𝑇 ′K𝜋 (𝑙,⊥𝑛) = J𝑇 ′K𝜋′ (𝑙,⊥𝑛)

We prove this by induction on length of 𝑇 ′:

• 𝑇 ′ = 𝜖: This is trivial.

58



• 𝑇 ′ = 𝑇 ′′ · 𝑤𝑖: This follows trivially from the Compositionality of valid traces and the fact that
𝜋′𝑤𝑖

= 𝜋𝑤𝑖
.

• 𝑇 ′ = 𝑇 ′′ · 𝑟𝑖: Recall that 𝑓 (𝑇1) ◦ 𝑇2 ∈ ΓNrs from lemma C. It follows that 𝑤𝑖 ∈ 𝑇 ′′. We have

J𝑇 ′′𝑟𝑖K𝜋′ (𝑙,⊥𝑛)
= J𝑟𝑖K𝜋′ (J𝑇 ′′K𝜋′ (𝑙,⊥𝑛)) (Compositionality of valid traces)
= J𝑟𝑖K𝜋′ (J𝑇 ′′K𝜋 (𝑙,⊥𝑛)) (induction)
= (fst(J𝑇 ′′K𝜋 (𝑙,⊥𝑛))
[𝑖 ← 𝜋′𝑟𝑖 (fst(J𝑇

′′K𝜋 (𝑙,⊥𝑛)) [𝑖], snd(J𝑇 ′′K𝜋 (𝑙,⊥𝑛))),
snd(J𝑇 ′′K𝜋 (𝑙,⊥𝑛)))

Here we perform a case split. If snd(J𝑇 ′′K𝜋 (𝑙,⊥𝑛)) [𝑖] = ⊥, by lemma C.0.7, we have
fst(J𝑇 ′′K𝜋 (𝑙,⊥𝑛)) [𝑖] = ⊥, which is in O⊥. Thus we have:

(fst(J𝑇 ′′K𝜋 (𝑙,⊥𝑛))
[𝑖 ← 𝜋′𝑟𝑖 (fst(J𝑇

′′K𝜋 (𝑙,⊥𝑛)) [𝑖], snd(J𝑇 ′′K𝜋 (𝑙,⊥𝑛))),
snd(J𝑇 ′′K𝜋 (𝑙,⊥𝑛)))

= (fst(J𝑇 ′′K𝜋 (𝑙,⊥𝑛))
[𝑖 ← 𝜋𝑟𝑖 (fst(J𝑇 ′′K𝜋 (𝑙,⊥𝑛)) [𝑖], snd(J𝑇 ′′K𝜋 (𝑙,⊥𝑛))),
snd(J𝑇 ′′K𝜋 (𝑙,⊥𝑛))) (semantics of protocol)

= J𝑇 ′′𝑟𝑖K𝜋 (𝑙,⊥𝑛)

Otherwise, the equation is satisfied obviously.

• 𝑇 ′ = 𝑇 ′′ · 𝑑𝑖: This is trivial.

Now, by definition of 𝑃-solvability, there exists a finite prefix 𝑇𝑝 of 𝑓 (𝑇1)𝑇2 satisfying
𝑃(𝑙, fst(J𝑇𝑝K𝜋 (𝑙,⊥𝑛)) [dead( 𝑓 (𝑇1)𝑇2) ← ⊥], dead( 𝑓 (𝑇1)𝑇2),Θ). By the Trace extension lemma, there
exists a finite prefix 𝑇 ′𝑝 of 𝑓 (𝑇1)𝑇2 satisfying

𝑃(𝑙, fst(J𝑇 ′𝑝K𝜋 (𝑙,⊥𝑛)) [dead( 𝑓 (𝑇1)𝑇2) ← ⊥], dead( 𝑓 (𝑇1)𝑇2),Θ)

where 𝑓 (𝑇1)𝑇𝑟 = 𝑇 ′𝑝 for some trace 𝑇𝑟 .

We have:

J𝑇 ′𝑝K𝜋 (𝑙,⊥𝑛)
= J 𝑓 (𝑇1)𝑇𝑟K𝜋 (𝑙,⊥𝑛)
= J 𝑓 (𝑇1)𝑇𝑟K𝜋′ (𝑙,⊥𝑛) (lemma C.0.8)
= (J𝑇𝑟K𝜋′ ◦ J 𝑓 (𝑇1)K𝜋′) (𝑙,⊥𝑛) (Compositionality of valid traces)
= (J𝑇𝑟K𝜋′ ◦ J𝑇1K𝜋′) (𝑙,⊥𝑛) (lemma C.0.6)
= J𝑇1𝑇𝑟K𝜋′ (𝑙,⊥𝑛) (Compositionality of valid traces

We observe that 𝑇1𝑇𝑟 is a prefix of 𝑇 , and together with lemma C.0.4, we have
𝑃(𝑙, fst(J𝑇1𝑇𝑟K𝜋′ (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ), thus completing our proof.

□
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Appendix D

Full Proof of the Non-layered ΓAlt to
Non-layered ΓNrs Proposition

Proposition D.0.1 (Non-layered ΓAlt to non-layered ΓNrs proposition). Given task description Θ and
solvability property 𝑃, ifΘ is 𝑃-solvable under the non-layered model for ΓAlt, thenΘ is also 𝑃-solvable
under the non-layered model for ΓNrs traces.

Proof. Assume the protocol (V, 𝜋) 𝑃-solves Θ under the non-layered model for ΓAlt traces. We define
V′ to be the set freely generated by the binary operator ⟨_, _⟩ on V ∪ N.

We define the function ver: V′→ V′ as follows:

ver(𝑥) =
{
𝑧 if 𝑥 = ⟨𝑦, 𝑧⟩
0 otherwise

We also define the function val: V′→ V′ as follows:

val(𝑥) =
{
𝑦 if 𝑥 = ⟨𝑦, 𝑧⟩
𝑥 otherwise

We define the protocol (V′, 𝜋′) as follows:

𝜋′𝑤𝑖
(𝑥, 𝑦) =

{
𝑦 if 𝑥 ∈ O⊥
⟨𝜋𝑤𝑖
(val(𝑥),⊥), ver(𝑥)⟩ otherwise

𝜋′𝑟𝑖 (𝑥, 𝑚) =



𝑥 if 𝑥 ∈ O⊥
𝑥 if ver(𝑚 [𝑖])≠ver(x)
𝜋𝑟𝑖 (val(𝑥),map(val, 𝑚)) if 𝜋𝑟𝑖 (val(𝑥),map(val, 𝑚)) ∈ O⊥
⟨𝜋𝑟𝑖 (val(𝑥),map(val, 𝑚)),
val(𝑥) + 1⟩ otherwise

otherwise

We continue our proof in two steps. We first prove that (V′, 𝜋′) 𝑃-solves Θ under the non-layered
model for ΓAlt traces. We then prove that it also 𝑃-solves Θ under the non-layered model for ΓNrs
traces as required.

For our first claim, we define the following invariant 𝐼 ⊆ V𝑛 × V𝑛 × V′𝑛 × V′𝑛 × A∗. We define that
𝐼 (𝑙, 𝑚, 𝑙′, 𝑚′, 𝑇) holds iff:
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• The two global memories agree with respect to value, i.e. for all 𝑖 ∈ [𝑛], 𝑚 [𝑖] = val(𝑚′[𝑖])

• For all 𝑖 ∈ [𝑛], one of these cases hold:

1. 𝑙𝑖 = 𝑙′
𝑖
and 𝑙𝑖 ∈ O⊥ ∪ I

2. 𝑑𝑖 ∈ 𝑇
3. 𝑤𝑖 is the last action in proj𝑖 (𝑇), 𝑙𝑖 = val(𝑙′

𝑖
), ver(𝑚′

𝑖
) = ver(𝑙′

𝑖
), and 𝑙𝑖 ∉ O⊥

4. 𝑟𝑖 is the the last action in proj𝑖 (𝑇), 𝑙𝑖 = val(𝑙′
𝑖
), ver(𝑚′

𝑖
) + 1 = ver(𝑙′

𝑖
), and 𝑙𝑖 ∉ O⊥

We now prove this lemma:

Lemma D.0.2. For all traces 𝑇 ∈ ΓAlt, prefixes 𝑇 ′ of T, 𝑙initial ∈ I𝑛⊥, let (𝑙, 𝑚) = J𝑇 ′K𝜋 (𝑙initial,⊥𝑛) and
(𝑙′, 𝑚′) = J𝑇 ′K𝜋′ (𝑙initial,⊥𝑛), we have 𝐼 (𝑙, 𝑚, 𝑙′, 𝑚′, 𝑇 ′).

We prove this by induction on 𝑇 ′. Note that 𝑇 and subsequently 𝑇 ′ are valid traces, so we make use of
the Compositionality of valid traces implicitly:

• 𝑇 ′ = 𝜖: It is trivial to see that the two global memories agree with each other. For each 𝑖 ∈ [𝑛],
case 1 holds.

• 𝑇 ′ = 𝑇 ′′𝑑𝑖: It is trivial to see the two global memories still agree by the induction hypothesis and
the Constant global memory lemma for non-layered models. For 𝑖, case 2 holds trivially. For
all 𝑗 ∈ [𝑛] \ {𝑖}, the same case holds by the constant memory lemmas (see subsection 2.2.4).

• 𝑇 ′ = 𝑇 ′′𝑤𝑖: We first assume the induction hypothesis for the 𝑇 ′′ prefix. For all 𝑗 ∈ [𝑛] \ {𝑖},
the same case holds by the constant memory lemmas (see subsection 2.2.4). For 𝑖, the cases we
need to consider are cases 1 and 4, since 𝑇 ∈ ΓAlt.
If case 1 is true before the write action, by the Write After Commit condition and the Constant
local memory lemma, both the local and global memories remain unchanged and thus the two
global memories agree, and case 1 holds.
If case 4 is true, unfolding the definitions and considering the Constant global memory lemma
for non-layered models, the two global memories agree and case 3 holds.

• 𝑇 ′ = 𝑇 ′′𝑟𝑖: We first assume the induction hypothesis for the 𝑇 ′′ prefix. For all 𝑗 ∈ [𝑛] \ {𝑖},
the same case holds by the constant memory lemmas (see subsection 2.2.4). For 𝑖, the cases we
need to consider for the 𝑇 ′′ prefix are cases 1 and 3 since 𝑇 ∈ ΓAlt.
If case 1 is true before the read action, by the Read After Commit condition and the Constant
global memory lemma for non-layered models, both the local and global memories remain
unchanged and thus the two global memories agree and case 1 holds.
If case 3 is true before the read action, by the Constant global memory lemma for non-layered
models, the two global memories remain unchanged and agree with each other. We also perform
a case split. If 𝜋𝑟𝑖 (𝑙𝑖, 𝑚) ∈ O⊥, by unfolding the definitions, case 1 holds. Otherwise case 4
holds.

Lemma D.0.3. The protocol (V′, 𝜋′) 𝑃-solves Θ under the non-layered model for ΓAlt traces.

Consider an arbitrary trace 𝑇 ∈ ΓAlt and 𝑙 ∈ I𝑛⊥. By assumption, there exists a prefix 𝑇 ′ of 𝑇 such
that 𝑃(𝑙, fst(J𝑇 ′K𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ). By considering lemma D.0.2, we then have
𝑃(𝑙, fst(J𝑇 ′K𝜋′ (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ) as required.
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Consider the following rewriting system with a family of rules 𝑅𝑎,𝑖 for 𝑎 ∈ {𝑟, 𝑤} and 𝑖 ∈ [𝑛] defined
as follows:

𝑅𝑤,𝑖 : 𝑇𝑎𝑤𝑖𝑇𝑏𝑤𝑖𝑇𝑐 ⇒ 𝑇𝑎𝑤𝑖𝑇𝑏𝑇𝑏 where 𝑇𝑏 does not contain any actions of 𝑖
𝑅𝑟,𝑖 : 𝑇𝑎𝑟𝑖𝑇𝑏𝑟𝑖𝑇𝑐 ⇒ 𝑇𝑎𝑟𝑖𝑇𝑏𝑇𝑏 where 𝑇𝑏 does not contain any actions of 𝑖

Lemma D.0.4. The rewriting system is terminating on all finite traces.

This is obvious since each rule decreases the length of a trace by one. Since the length of a finite trace
is finite, we can apply rules finitely many times.

Lemma D.0.5. The above rule is confluent on all finite traces.

This result is a consequence by analyzing all critical pairs of the rewriting system and observing that
they all are convergent.

Let 𝑓 be the function that takes in a finite trace 𝑇 and returns the trace after being rewritten by the
above rewriting system.

Lemma D.0.6. For all finite traces 𝑇1, 𝑇2 with 𝑇1 ≤ 𝑇2, we have 𝑓 (𝑇1) ≤ 𝑓 (𝑇2).

This can be proven by induction on the length of the traces.

Lemma D.0.7. For all finite valid traces 𝑇 , J𝑇K𝜋′ = J 𝑓 (𝑇)K𝜋′ .

This can be proven by induction on the number of rules applied. The Compositionality of valid traces
and constant memory lemmas (see subsection 2.2.4) are used in the proof.

We now define 𝑓 ′ which takes in a trace 𝑇 ∈ ΓNrs and returns
⊔

𝑖 𝑓 (𝑇𝑖) for some increasing sequence
of finite traces (𝑇𝑖)𝑖 such that

⊔
𝑖 𝑇𝑖 = 𝑇 .

Lemma D.0.8. For all traces 𝑇 , dead( 𝑓 ′(𝑇)) = dead(𝑇)

This is obvious because we never add nor remove 𝑑𝑖 actions in the rewriting rule.

Lemma D.0.9. For all traces 𝑇 ∈ ΓNrs, 𝑓 ′(𝑇) ∈ ΓAlt.

This can be proved by proving that each 𝑓 ′(𝑇𝑖) is alternating by induction and that the limit of a
sequence of alternating traces must also be alternating.

Consider arbitrary 𝑙 ∈ I𝑛⊥ and trace 𝑇 ∈ ΓNrs. We have 𝑓 ′(𝑇) ∈ ΓAlt by lemma D.0.9. By definition
of 𝑃-solvability, there exists a prefix 𝑇 ′ of 𝑓 ′(𝑇) such that 𝑃(𝑙, fst(J𝑇 ′K𝜋′ (𝑙,⊥𝑛)) [dead( 𝑓 (𝑇)) ←
⊥], dead( 𝑓 (𝑇)),Θ).

We have

𝑇 ′

≤ 𝑓 ′(𝑇) (definition)

=
⊔
𝑖

𝑓 (𝑇𝑖) (definition)
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for some increasing sequence of finite traces (𝑇𝑖)𝑖, where 𝑇 =
⊔

𝑖 𝑇𝑖. Thus, there must exists some
𝑘 ∈ N such that 𝑇 ′ ≤ 𝑓 (𝑇𝑘 ).

By the Trace extension lemma, we have𝑃(𝑙, fst(J 𝑓 (𝑇𝑘 )K𝜋′ (𝑙,⊥𝑛)) [dead( 𝑓 ′(𝑇)) ← ⊥], dead( 𝑓 ′(𝑇)),Θ).
By simple substitution, we also have 𝑃(𝑙, fst(J𝑇𝑘K𝜋′ (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ), thus com-
pleting the proof. □
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Appendix E

Full Proof of the 𝛿-protocol Proposition

Proposition E.0.1 (𝛿-protocol proposition). For any distributed task Θ, trace property Γ ⊆ Γ𝑘-Alt for
some 𝑘 ∈ N, and solvability property 𝑃, Θ is 𝑃-solvable under the non-layered model for Γ traces if
and only if there exists a 𝛿-protocol 𝜙 that 𝑃-solves Θ under the non-layered model for Γ traces. This
proposition is also true in the layered case.

Proof. We only prove this for the non-layered case. The layered case is similar.

(⇒) : Assume the protocol (V, 𝜋) 𝑃-solves Θ under the non-layered model for Γ traces. We define
V′ to be the set freely generated by the binary operator ⟨_, _⟩ on V.

We define the functions val, his: V′→ V′ as follows:

val(𝑥) =
{
𝑎 if 𝑥 = ⟨𝑎, 𝑏⟩
𝑥 otherwise

his(𝑥) =
{
𝑏 if 𝑥 = ⟨𝑎, 𝑏⟩
⊥ otherwise

We define the 𝛿-protocol (V′, 𝜙) as follows:

𝜙𝑤𝑖
(𝑥) = 𝜋𝑤𝑖

(val(𝑥), his(𝑥))

𝜙𝑟𝑖 (𝑥, 𝑚) =
{⊥ if 𝑥 = ⊥
⟨𝜋𝑟𝑖 (val(𝑥), 𝑚), 𝑚⟩ otherwise

𝜙𝛿𝑖 (𝑥) = val(𝑥)

We now define the following invariant 𝐼 ⊆ V𝑛 ×V𝑛 ×V′𝑛 ×V′𝑛 ×A∗ where 𝐼 (𝑙, 𝑚, 𝑙′, 𝑚′, 𝑇) holds iff:

• The two global memories are identical, i.e. 𝑚 = 𝑚′

• The local memories agree with each other, i.e. 𝑙 [𝑖] = val(𝑙′[𝑖])

• For all 𝑖 ∈ [𝑛], one of these cases hold:

1. 𝑙′[𝑖] = ⊥ and 𝑚′[𝑖] = ⊥
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2. The last action of proj𝑖 (𝑇) is a read or does not exist, 𝑙′[𝑖] ≠ ⊥ and his(𝑙′[𝑖]) = 𝑚′[𝑖]
3. The last action of proj𝑖 (𝑇) exists and is not a read, and 𝑙′[𝑖] ≠ ⊥

We now prove this lemma:

Lemma E.0.2. For all traces 𝑇 ∈ Γ, prefixes 𝑇 ′ of 𝑇 , 𝑙initial ∈ I𝑛⊥, let (𝑙, 𝑚) = J𝑇 ′K𝜋 (𝑙initial,⊥𝑛) and
(𝑙′, 𝑚′) = J𝑇 ′K𝜙 (𝑙initial,⊥𝑛), we have 𝐼 (𝑙, 𝑚, 𝑙′, 𝑚′, 𝑇 ′).

We prove this by induction on the length of 𝑇 ′. Note that 𝑇 and subsequently 𝑇 ′ are valid traces, so
we make use of the Compositionality of valid traces implicitly:

• 𝑇 ′ = 𝜖 : It is trivial to see that two first two conditions are satisfied. Depending whether
𝑙initial [𝑖] = ⊥, we have the first case or the second for each 𝑖 ∈ [𝑛].

• 𝑇 ′ = 𝑇 ′′𝑑𝑖 : By the constant memory lemmas (see subsection 2.2.4) and the induction hypothesis,
the conditions are satisfied.

• 𝑇 ′ = 𝑇 ′′𝑤𝑖 : We first assume the induction hypothesis for the 𝑇 ′′ prefix. For all 𝑗 ∈ [𝑛] \ {𝑖},
the same case holds by the constant memory lemmas (see subsection 2.2.4). For 𝑖, the cases we
need to consider are cases 1 and 2, since 𝑇 ∈ Γ𝑘-Alt.
If case 1 is true before the write action, by the Write After Commit condition and the Constant
local memory lemma, case 1 holds.
If case 2 holds before the write, by unfolding the definitions, we have case 3 afterwards.

• 𝑇 ′ = 𝑇 ′′𝑟𝑖 : We first assume the induction hypothesis for the 𝑇 ′′ prefix. For all 𝑗 ∈ [𝑛] \ {𝑖},
the same case holds by the constant memory lemmas (see subsection 2.2.4). For 𝑖, the cases we
need to consider are cases 1 and 3, since 𝑇 ∈ Γ𝑘-Alt.
If case 1 is true before the read action, by the Read After Commit condition and the Constant
global memory lemma for non-layered models, case 1 holds.
If case 3 holds before the read, by unfolding the definitions, we have case 2 afterwards.

Now consider arbitrary trace 𝑇 ∈ Γ and 𝑙 ∈ I𝑛⊥. By assumption, there exists a prefix 𝑇 ′ of 𝑇 such
that 𝑃(𝑙, fst(J𝑇 ′K𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ). By the Trace extension lemma, we have
𝑃(𝑙, fst(J𝑇K𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ). By lemma E.0.2, we have:

𝑃(𝑙, 𝜙𝛿 (fst(J𝑇K𝜙 (𝑙,⊥𝑛))) [dead(𝑇) ← ⊥], dead(𝑇),Θ)

(⇐): Assume the 𝛿-protocol (V, 𝜙) 𝑃-solves Θ under the non-layered model for Γ traces. We define
V′ to be the set freely generated by the binary operator ⟨_, _⟩ on V ∪ N.

We define the functions val, ver: V′→ V′ as follows:

val(𝑥) =
{
𝑎 if 𝑥 = ⟨𝑎, 𝑏⟩
𝑥 otherwise

ver(𝑥) =
{
𝑏 if 𝑥 = ⟨𝑎, 𝑏⟩
0 otherwise

We define the normal protocol (V′, 𝜋) as follows:
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𝜋𝑤𝑖
(𝑥, 𝑦) =

{
𝑦 if 𝑥 ∈ O⊥
𝜙𝑤𝑖
(val(𝑥)) otherwise

𝜋𝑟𝑖 (𝑥, 𝑚) =


𝑥 if 𝑥 ∈ O⊥{
𝜙𝛿𝑖 (𝜙𝑟𝑖 (val(𝑥), 𝑚)) ver(𝑥)=k-1
⟨𝜙𝑟𝑖 (val(𝑥), 𝑚), ver(𝑥) + 1⟩ otherwise

otherwise

We now define the following invariant 𝐼 ⊆ V𝑛 × V𝑛 × V′𝑛 × V′𝑛 × A∗ where 𝐼 (𝑙, 𝑚, 𝑙′, 𝑚′, 𝑇) holds if
and only if:

• The two global memories are identical, i.e. 𝑚 = 𝑚′

• For 𝑖 ∈ [𝑛], one of these cases hold:

1. 𝑙 [𝑖] = 𝑙′[𝑖] = 𝑚 [𝑖] = ⊥
2. 𝑙 [𝑖] = 𝑙′[𝑖] ∈ I and proj𝑖 (𝑇) contains no reads from 𝑖

3. 𝑙′[𝑖] = ⟨𝑙 [𝑖], 𝑞⟩ where 𝑞 is the number of reads in proj𝑖 (𝑇) and 𝑞 ≠ 𝑘

4. 𝑙′[𝑖] = 𝜙𝛿𝑖 (𝑙 [𝑖]) and the number of reads in proj𝑖 (𝑇) is 𝑘

We now prove this lemma:

Lemma E.0.3. For all traces 𝑇 ∈ Γ, prefixes 𝑇 ′ of 𝑇 , 𝑙initial ∈ I𝑛⊥, let (𝑙, 𝑚) = J𝑇 ′K𝜙 (𝑙initial,⊥𝑛) and
(𝑙′, 𝑚′) = J𝑇 ′K𝜋 (𝑙initial,⊥𝑛), we have 𝐼 (𝑙, 𝑚, 𝑙′, 𝑚′, 𝑇 ′).

We prove this by induction on the length of 𝑇 ′. Note that 𝑇 and subsequently 𝑇 ′ are valid traces, so
we make use of the Compositionality of valid traces implicitly:

• 𝑇 ′ = 𝜖 : It is trivial to see that two global memories agree. Depending whether 𝑙initial [𝑖] = ⊥,
we have the first case or the second for each 𝑖 ∈ [𝑛].

• 𝑇 ′ = 𝑇 ′′𝑑𝑖 : By the constant memory lemmas (see subsection 2.2.4) and the induction hypothesis,
the conditions are satisfied.

• 𝑇 ′ = 𝑇 ′′𝑤𝑖 : We first assume the induction hypothesis for the 𝑇 ′′ prefix. For all 𝑗 ∈ [𝑛] \ {𝑖},
the same case holds by the constant memory lemmas (see subsection 2.2.4). For 𝑖, the cases we
need to consider are cases 1, 2, and 3, since 𝑇 ∈ Γ𝑘-Alt.
If case 1 is true before the write action, by the Write strictness condition and the Constant local
memory lemma, case 1 holds.
If case 2 holds before the write, by unfolding the definitions, we have case 2 afterwards.
If case 3 holds before the write, by unfolding the definitions, we have case 3 afterwards.

• 𝑇 ′ = 𝑇 ′′𝑟𝑖 : We first assume the induction hypothesis for the 𝑇 ′′ prefix. For all 𝑗 ∈ [𝑛] \ {𝑖},
the same case holds by the constant memory lemmas (see subsection 2.2.4). For 𝑖, the cases we
need to consider are cases 1, 2, and 3, since 𝑇 ∈ Γ𝑘-Alt.
If case 1 is true before the write action, by the Read strictness condition and the Constant global
memory lemma for non-layered models, case 1 holds.
If case 2 or 3 is true before the read action, we perform a case split on whether ver(𝑥) = 𝑘 − 1.
By unfolding the definitions, we have either case 4 or case 3 holding.
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Now consider arbitrary trace 𝑇 ∈ Γ and 𝑙 ∈ I𝑛⊥.

By assumption, we have 𝑃(𝑙, 𝜙𝛿 (fst(J𝑇K𝜙 (𝑙,⊥𝑛))) [dead(𝑇) ← ⊥], dead(𝑇),Θ). By lemma E.0.3, we
have 𝑃(𝑙, fst(J𝑇K𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥], dead(𝑇),Θ) as required. □
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Appendix F

GMT’s Well-bracketed Property

Consider the following definition from GMT’s paper:

Definition F.0.1 (Well-bracketed traces). A well-bracketed trace 𝑇 is an alternating trace where for
all 𝑖 ∈ [𝑛], if proj𝑖 (𝑇) contains a 𝑑𝑖 action, (which must be the last action since 𝑇 is valid), the second
last action must be a 𝑤𝑖.

The trace property ΓWb+It+IS contains all well-bracketed traces 𝑇 ∈ ΓIt+IS.

We show that we can solve a distributed task with the layered model for ΓWb+It+IS traces if and only if
we can solve the same task with the layered model for ΓIt+IS traces.

Proposition F.0.1 (Equivalence of layered ΓWb+It+IS and layered ΓIt+IS proposition). Given task de-
scription Θ, Θ is 𝑃GMT-solvable under the layered model for ΓWb+It+IS traces if and only if it is
𝑃GMT-solvable under the layered model for ΓIt+IS traces.

Proof. We prove both directions as follows:

(⇒): Assume the protocol (V, 𝜋) 𝑃GMT-solves Θ under the layered model for ΓWb+It+IS traces. We
claim that (V, 𝜋) also 𝑃GMT-solves Θ under the layered model for ΓIt+IS traces.

Consider arbitrary trace 𝑇 ∈ ΓIt+IS and 𝑙 ∈ I𝑛⊥. Note that there must exists traces 𝑇1, 𝑇2 such that
𝑇1𝑇2 = 𝑇 and 𝑑𝑖 ∈ 𝑇1 for all 𝑖 ∈ dead(𝑇).

Consider a family of rewriting systems 𝑅𝑖 indexed by 𝑖 ∈ [𝑛] with two rules each:

𝑅1𝑖 : 𝑇𝑎𝑟𝑖𝑇𝑏𝑑𝑖𝑇𝑐 ⇒ 𝑇𝑎𝑑𝑖𝑇𝑏𝑇𝑐 where 𝑇𝑏 does not contain 𝑤𝑖, 𝑑𝑖, or 𝑟𝑖
𝑅2𝑖 : 𝑇𝑎𝑑𝑖𝑇𝑏 ⇒ 𝑤𝑖𝑑𝑖𝑇𝑎𝑇𝑏 where 𝑇𝑎 does not contain 𝑤𝑖, 𝑑𝑖, or 𝑟𝑖

Lemma F.0.2. For each 𝑖 ∈ [𝑛], the rewriting system 𝑅𝑖 is both terminating and confluent for all finite
alternating traces.

This is obvious since exactly one of the two rules can be applied iff the last action of the 𝑖-th process
is 𝑑𝑖, and the second last action is not 𝑤𝑖. After the rewrite, this condition does not hold.

Now let 𝑓𝑖 be the function that takes in a finite alternating trace and perform the rewriting system 𝑅𝑖

on it.

Lemma F.0.3. For all prefixes𝑇1 of𝑇 , there exists a set 𝑠 ⊆ dead(𝑇) such that fst(JJ𝑇1KK𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ←
⊥] = fst(JJ( 𝑓𝑛−1 ◦ · · · ◦ 𝑓0) (𝑇1)KK𝜋 (𝑙 [𝑠← ⊥],⊥𝑛)) [dead(𝑇) ← ⊥].
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We prove this by induction on the number of 𝑓𝑖’s applied.

• Base case: We take 𝑠 = ∅ and the equation holds trivially.

• Inductive case: Let 𝑇 ′1 = ( 𝑓𝑘−1 ◦ · · · ◦ 𝑓0) (𝑇1). By the induction hypothesis, suppose
fst(JJ𝑇1KK𝜋 (𝑙,⊥𝑛)) [dead(𝑇) ← ⊥] = fst(JJ𝑇 ′1KK𝜋 (𝑙 [𝑠← ⊥],⊥

𝑛)) [dead(𝑇) ← ⊥].
We perform a case split:

– 𝑅1𝑘 is applied on𝑇 ′1: It suffices to prove that fst(JJ𝑇𝑎𝑟𝑖𝑇𝑏𝑑𝑖𝑇𝑐KK𝜋 (𝑙 [𝑠← ⊥],⊥𝑛)) [dead(𝑇) ←
⊥][𝑖] = fst(JJ𝑇𝑎𝑑𝑖𝑇𝑏𝑇𝑐KK𝜋 (𝑙 [𝑠 ← ⊥],⊥𝑛)) [dead(𝑇) ← ⊥][𝑖] for all 𝑖 ∈ [𝑛]. We perform
another case split:

∗ 𝑖 ∈ dead(𝑇) : This is trivial as LHS = ⊥ = RHS.
∗ 𝑖 ∉ dead(𝑇) : It suffices to prove that fst(JJ𝑇𝑎𝑟𝑖𝑇𝑏𝑑𝑖𝑇𝑐KK𝜋 (𝑙 [𝑠 ← ⊥],⊥𝑛)) [𝑖] =

fst(JJ𝑇𝑎𝑑𝑖𝑇𝑏𝑇𝑐KK𝜋 (𝑙 [𝑠 ← ⊥],⊥𝑛)) [𝑖] which we can prove by induction easily on the
length of 𝑇𝑏𝑇𝑐 and showing that the global memories are identical and that the local
memories except the 𝑖-th one agree.

– 𝑅2𝑘 is applied on 𝑇 ′1: It suffices to prove that fst(JJ𝑇𝑎𝑑𝑖𝑇𝑏KK𝜋 (𝑙 [𝑠← ⊥],⊥𝑛)) [dead(𝑇) ←
⊥][𝑖] = fst(JJ𝑤𝑖𝑑𝑖𝑇𝑎𝑇𝑏KK𝜋 (𝑙 [𝑠 ∪ {𝑖} ← ⊥],⊥𝑛)) [dead(𝑇) ← ⊥][𝑖] for all 𝑖 ∈ [𝑛].
This is similar to the previous case, where we perform a case split on whether 𝑖 ∈ dead(𝑇).
In the first case it is trivial. In the second case, one just have to prove the global memory
and the local memory except the 𝑖-th element agree by induction on the length of 𝑇𝑎 and
𝑇𝑏.

– No rules are applied on 𝑇 ′1: This is trivial as 𝑓𝑘 (𝑇 ′1) = 𝑇 ′1.

Let 𝑇 ′1 = ( 𝑓𝑛−1 ◦ . . . ◦ 𝑓0) (𝑇1).
Lemma F.0.4. 𝑇 ′1𝑇2 ∈ ΓWb+It+IS.

It suffices to show that 𝑇 ′1𝑇2 is well bracketed, iterated, immediate snapshot. We implicitly make use
of the relatively obvious fact that proj𝑖 (𝑇 ′1𝑇2) = proj𝑖 ( 𝑓𝑖 (𝑇1)𝑇2).

It is obvious that 𝑇 ′1𝑇2 is well-bracketed by the definition of 𝑅𝑖. One can also observe that it is iterated
by considering the numbering of the actions and that each rewriting rule preserves the iterated property.
Lastly, by case analysis of each rule, one can observe that each rewriting rule preserves immediate
snapshot.

It now suffices to claim that there exists prefix 𝑇 ′
𝑃

of 𝑇2 such that we have

(𝑙 [dead(𝑇1𝑇2) ← ⊥], fst(JJ𝑇1𝑇
′
𝑝KK𝜋 (𝑙,⊥𝑛)) [dead(𝑇1𝑇2) ← ⊥]) ∈ Θ

We define the finite set 𝑆 as the powerset of dead(𝑇1). Note that by assumption, for all 𝑠 ∈
𝑆, there exists a prefix 𝑇𝑝 of 𝑇 ′1𝑇2 such that (𝑙 [𝑠 ← ⊥][dead(𝑇 ′1𝑇2) ← ⊥], fst(JJ𝑇𝑝KK𝜋 (𝑙 [𝑠 ←
⊥],⊥𝑛)) [dead( 𝑓 (𝑇1)𝑇2) ← ⊥]) ∈ Θ. By the Trace extension lemma and the fact that 𝑆 is fi-
nite, there must exists prefix 𝑇 ′

𝑃
of 𝑇2 such that for all 𝑠 ∈ 𝑆, we have (𝑙 [𝑠 ← ⊥][dead(𝑇 ′1𝑇2) ←

⊥], fst(JJ𝑇 ′1𝑇
′
𝑝KK𝜋 (𝑙 [𝑠← ⊥],⊥𝑛)) [dead(𝑇 ′1𝑇2) ← ⊥]) ∈ Θ.

By considering the rewriting rules, it is obvious that dead(𝑇 ′1𝑇2) = dead(𝑇 ′1) = dead(𝑇1) = dead(𝑇1𝑇2).
Therefore for all 𝑠 ∈ 𝑆, we have (𝑙 [dead(𝑇1𝑇2) ← ⊥], fst(JJ𝑇 ′1𝑇

′
𝑝KK𝜋 (𝑙 [𝑠 ← ⊥],⊥𝑛)) [dead(𝑇1𝑇2) ←

⊥]) ∈ Θ. We note that 𝑇1𝑇
′
𝑝 is a prefix of 𝑇 , and that ( 𝑓𝑛−1 ◦ · · · ◦ 𝑓0) (𝑇1𝑇

′
𝑝) = ( 𝑓𝑛−1 ◦ . . . ◦ 𝑓0) (𝑇1)𝑇 ′𝑝 =

𝑇 ′1𝑇
′
𝑝. So finally by lemma F.0.3, we have (𝑙 [dead(𝑇1𝑇2) ← ⊥], fst(JJ𝑇1𝑇

′
𝑝KK𝜋 (𝑙,⊥𝑛)) [dead(𝑇1𝑇2) ←

⊥]) ∈ Θ as required.
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(⇐): This direction follows trivially from the Trace subset proposition.

□
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