Understanding the Source Coding Theorem: A talk on Shannon's Entropy

Kwing Hei Li

University of Cambridge

khl61@cam.ac.uk

October 21, 2020

Kwing Hei Li (CHU)

Understanding the Source Coding Theorem

October 21, 2020 1 / 24

Question(1)

Figure: ICMA photos: Creative Commons Attribution-Share Alike 2.0 Generic license

Encoding a fair coin toss

э

• • • • • • • • • • • •

Question(1)

Figure: ICMA photos: Creative Commons Attribution-Share Alike 2.0 Generic license

Encoding a fair coin toss vs Encoding a lot of fair coin tosses

Kwing Hei Li (CHU)

Understanding the Source Coding Theorem

э.

э

• • • • • • • • • • • • •

Question(2)

Figure: ICMA photos: Creative Commons Attribution-Share Alike 2.0 Generic license

Encoding a **biased** coin toss (99% heads, 1% tails)

• □ ▶ • 4□ ▶ • Ξ ▶ •

Question(2)

Figure: ICMA photos: Creative Commons Attribution-Share Alike 2.0 Generic license

Encoding a **biased** coin toss (99% heads, 1% tails) vs Encoding a lot of **biased** coin tosses

Kwing Hei Li (CHU)

Understanding the Source Coding Theorem

October 21, 2020 3 / 24

Question(3)

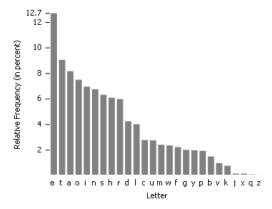


Figure: Iain.dalton: Creative Commons Attribution-ShareAlike 3.0 License

Encoding an English letter (Note $26 < 32 = 2^5$)

Question(3)

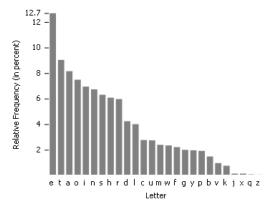


Figure: Iain.dalton: Creative Commons Attribution-ShareAlike 3.0 License

Encoding an English letter (Note $26 < 32 = 2^5$) vs Encoding a novel

Understanding the Source Coding Theorem

Definition of Surprisal

Given event x with probability P(x), surprisal of x, $I(x) = -\log P(x)$

э

< 1 k

Definition of Surprisal

Given event x with probability P(x), surprisal of x, $I(x) = -\log P(x)$

• Measures information content of an event

Definition of Surprisal

Given event x with probability P(x), surprisal of x, $I(x) = -\log P(x)$

- Measures information content of an event
- Consider
 - "Hei Li ate a chocolate cake during his Compsci Talk"
 - Whei Li did not eat a chocolate cake during his Compsci Talk

Definition of Entropy

Given discrete r.v. X, with possible outcomes $x_1,...,x_n$ which occur with probability $P(x_1),...,P(x_n)$, entropy of X, $H(X) = -\sum_{i=1}^n P(x_i) \log P(x_i)$

Definition of Entropy

Given discrete r.v. X, with possible outcomes $x_1,...,x_n$ which occur with probability $P(x_1),...,P(x_n)$, entropy of X, $H(X) = -\sum_{i=1}^n P(x_i) \log P(x_i)$

• Entropy is expected value of surprisal over all outcomes.

Definition of Entropy

Given discrete r.v. X, with possible outcomes $x_1,...,x_n$ which occur with probability $P(x_1),...,P(x_n)$, entropy of X, $H(X) = -\sum_{i=1}^n P(x_i) \log P(x_i)$

- Entropy is expected value of surprisal over all outcomes.
- Informally, entropy =
 - amount of uncertainty of r.v. has before it is resolved
 - amount of information r.v. provides after it is resolved

• Suppose
$$P(X = i) = \frac{1}{6}$$
 for $i = 1,...,6$ (fair die)

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

• Suppose
$$P(X = i) = \frac{1}{6}$$
 for $i = 1,...,6$ (fair die)

•
$$H(X) = -\sum_{i=1}^{6} \frac{1}{6} \log \frac{1}{6}$$

\$\approx 2.58496 bits

э

Image: A matrix

• Suppose
$$P(X = i) = \frac{1}{6}$$
 for $i = 1,...,6$ (fair die)

•
$$H(X) = -\sum_{i=1}^{6} \frac{1}{6} \log \frac{1}{6}$$

 $\approx 2.58496 \text{ bits}$

• Suppose
$$P(Y = i) = \begin{cases} \frac{1}{25} & \text{for } i = 1, ..., 5\\ \frac{4}{5} & \text{for } i = 6 \end{cases}$$
 (biased die)

э

Image: A matrix

• Suppose
$$P(X = i) = \frac{1}{6}$$
 for $i = 1,...,6$ (fair die)

•
$$H(X) = -\sum_{i=1}^{6} \frac{1}{6} \log \frac{1}{6}$$

 $\approx 2.58496 \text{ bits}$

• Suppose
$$P(Y = i) = \begin{cases} \frac{1}{25} & \text{for } i = 1, ..., 5\\ \frac{4}{5} & \text{for } i = 6 \end{cases}$$
 (biased die)
• $H(Y) = -(\sum_{i=1}^{5} \frac{1}{25} \log \frac{1}{25} + \frac{4}{5} \log \frac{4}{5})$
 ≈ 1.1863137 bits

< 47 ▶

• Suppose
$$P(X = i) = \frac{1}{6}$$
 for $i = 1,...,6$ (fair die)

• $H(X) = -\sum_{i=1}^{6} \frac{1}{6} \log \frac{1}{6}$ \$\approx 2.58496 bits

• Suppose
$$P(Y = i) = \begin{cases} \frac{1}{25} & \text{for } i = 1, ..., 5\\ \frac{4}{5} & \text{for } i = 6 \end{cases}$$
 (biased die)

•
$$H(Y) = -(\sum_{i=1}^{5} \frac{1}{25} \log \frac{1}{25} + \frac{4}{5} \log \frac{4}{5})$$

 ≈ 1.1863137 bits

• High uncertainty = high information content = high entropy "Information is the resolution of uncertainty" - Shannon

Informal Source Coding Theorem

N i.i.d. r.v.s each with entropy H(X) can be compressed into more than N H(X) bits with negligible risk of information loss, as N tends to infinity

Informal Source Coding Theorem

N i.i.d. r.v.s each with entropy H(X) can be compressed into more than N H(X) bits with negligible risk of information loss, as N tends to infinity

Converse of Informal Source Coding Theorem

If N i.i.d. r.v.s each with entropy H(X) are compressed into fewer than N H(X) bits, it is virtually certain that information will be lost

Source Coding Theorem (A more formal definition)

Source Coding Theorem

Given discrete r.v. X and $\epsilon > 0$, \exists positive integer N such that \forall integers n > N, \exists an encoder which takes n i.i.d. repetition of the source, X_1, \ldots, X_n and maps it to $n(H(X) + \epsilon)$ binary bits such that the source outcomes are recoverable from the bits with probability of at least $1 - \epsilon$

• Alice gives Bob real number $\epsilon > 0$ and a discrete r.v. X

- Alice gives Bob real number $\epsilon > 0$ and a discrete r.v. X
- Bob gives Alice positive integer N

- Alice gives Bob real number $\epsilon > 0$ and a discrete r.v. X
- Bob gives Alice positive integer N
- Alice gives Bob positive integer n > N

- Alice gives Bob real number $\epsilon > 0$ and a discrete r.v. X
- Bob gives Alice positive integer N
- Alice gives Bob positive integer n > N
- Bob constructs an encoder that
 - takes in n i.i.d. repetition of X
 - 2 outputs $n(H(X) + \epsilon)$ binary bits
 - ${f 0}$ inputs are recoverable with at least probability $1-\epsilon$

10 / 24

- Alice gives Bob real number $\epsilon > 0$ and a discrete r.v. X
- Bob gives Alice positive integer N
- Alice gives Bob positive integer n > N
- Bob constructs an encoder that
 - takes in n i.i.d. repetition of X
 - 2 outputs $n(H(X) + \epsilon)$ binary bits
 - (3) inputs are recoverable with at least probability $1-\epsilon$
- The Source Coding Theorem states that Bob always wins this challenge!

Example of The Source Coding Theorem Challenge(1)

• Alice gives Bob real number $\epsilon = \frac{1}{30} > 0$ and a discrete r.v. X where $\begin{cases} P(X = A) = \frac{1}{2} \\ P(X = B) = \frac{1}{3} \\ P(X = C) = \frac{1}{6} \\ Note \ H(X) \approx 1.459 \text{ bits} \end{cases}$

Example of The Source Coding Theorem Challenge(1)

- Alice gives Bob real number $\epsilon = \frac{1}{30} > 0$ and a discrete r.v. X where $\begin{cases} P(X = A) = \frac{1}{2} \\ P(X = B) = \frac{1}{3} \\ P(X = C) = \frac{1}{6} \\ Note \ H(X) \approx 1.459 \text{ bits} \end{cases}$
- Bob gives Alice positive integer N = 1

Example of The Source Coding Theorem Challenge(1)

- Alice gives Bob real number $\epsilon = \frac{1}{30} > 0$ and a discrete r.v. X where $\begin{cases} P(X = A) = \frac{1}{2} \\ P(X = B) = \frac{1}{3} \\ P(X = C) = \frac{1}{6} \\ \text{Note } H(X) \approx 1.459 \text{ bits} \end{cases}$
- Bob gives Alice positive integer N = 1
- Alice gives Bob positive integer n = 2 > N

Example of The Source Coding Theorem Challenge(2)

• Bob constructs an encoder as follows:

```
\begin{cases} AA \to 000 \\ AB \to 001 \\ AC \to 010 \\ \dots \\ CB \to 111 \\ CC \to \text{encoder explodes} \end{cases}
```

Example of The Source Coding Theorem Challenge(2)

• Bob constructs an encoder as follows:

```
\begin{cases} AA \rightarrow 000 \\ AB \rightarrow 001 \\ AC \rightarrow 010 \\ ... \\ CB \rightarrow 111 \\ CC \rightarrow \text{encoder explodes} \end{cases}
```

- This encoder
 - takes in 2 i.i.d. repetition of X
 - **2** outputs $n(H(X) + \epsilon) \approx 2.98$ binary bits
 - (a) inputs are recoverable with at least probability $\frac{29}{30}$ (This encoder actually works with probability $\frac{35}{36}$)

• Always possible to compress data with code rate more than entropy of source with negligible risk of information loss

- Always possible to compress data with code rate more than entropy of source with negligible risk of information loss
- Impossible to compress data with code rate lower than entropy of source, without losing information

- Always possible to compress data with code rate more than entropy of source with negligible risk of information loss
- Impossible to compress data with code rate lower than entropy of source, without losing information
- Lossless data compression methods, e.g. Huffman codes

Operational meaning of Shannon's entropy

 Informally, operational definition describes how you can measure an abstract concept through empirical observations or a set of procedures

Operational meaning of Shannon's entropy

- Informally, operational definition describes how you can measure an abstract concept through empirical observations or a set of procedures
- Theorem provides operational definition to Shannon's entropy

Operational meaning of Shannon's entropy

- Informally, operational definition describes how you can measure an abstract concept through empirical observations or a set of procedures
- Theorem provides operational definition to Shannon's entropy
- Shannon's entropy = limit of how well you can compress the source

Weak Law of Large Numbers

Let X_1 , X_2 ,... be an infinite sequence of i.i.d r.v. with expected value $\mathbb{E}(X_i) = \mu$ for all i = 1, 2, ...Let sample average $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$ Then for all $\epsilon > 0$, $\lim_{n \to \infty} P(|\overline{X_n} - \mu| < \epsilon) = 1$

Weak Law of Large Numbers

Let X_1 , X_2 ,... be an infinite sequence of i.i.d r.v. with expected value $\mathbb{E}(X_i) = \mu$ for all i = 1, 2, ...Let sample average $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$ Then for all $\epsilon > 0$, $\lim_{n \to \infty} P(|\overline{X_n} - \mu| < \epsilon) = 1$

• Informally, the more you sample a r.v., the closer the mean gets to the expected value

Weak Law of Large Numbers

Let X_1 , X_2 ,... be an infinite sequence of i.i.d r.v. with expected value $\mathbb{E}(X_i) = \mu$ for all i = 1, 2, ...Let sample average $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$ Then for all $\epsilon > 0$, $\lim_{n \to \infty} P(|\overline{X_n} - \mu| < \epsilon) = 1$

- Informally, the more you sample a r.v., the closer the mean gets to the expected value
- Example: Consider a game where you lose \$ 6 if you roll 6 but you win \$ 1 otherwise
 Expected value of game = \$-¹/₆
 If you play many times ≈ losing \$¹/₆ every time you play it!

Consider discrete r.v. X with possible outcomes x₁,...,x_m which occur with probability P(x₁),...,P(x_m)

- Consider discrete r.v. X with possible outcomes x₁,...,x_m which occur with probability P(x₁),...,P(x_m)
- Let $Y \sim -\log P(X)$.

- Consider discrete r.v. X with possible outcomes x₁,...,x_m which occur with probability P(x₁),...,P(x_m)
- Let $Y \sim -\log P(X)$.
- Y is surprisal of outcome of X ! So $\mathbb{E}(Y) = -\sum_{i=1}^{m} P(x_i) \log P(x_i)$ = H(X)

- Consider discrete r.v. X with possible outcomes x₁,...,x_m which occur with probability P(x₁),...,P(x_m)
- Let $Y \sim -\log P(X)$.
- Y is surprisal of outcome of X ! So $\mathbb{E}(Y) = -\sum_{i=1}^{m} P(x_i) \log P(x_i)$ = H(X)
- Therefore given *n* i.i.d r.v. $X_1, ..., X_n \sim X$, We have

$$= \frac{1}{n} \sum_{i=1}^{n} -\log P(X_i)$$

= $\frac{1}{n} \sum_{i=1}^{n} Y_i$
 $\rightarrow H(X) \text{ as } n \rightarrow \infty$

$$(Y_i \sim Y)$$

(WLLN)

- Consider discrete r.v. X with possible outcomes x₁,...,x_m which occur with probability P(x₁),...,P(x_m)
- Let $Y \sim -\log P(X)$.
- Y is surprisal of outcome of X ! So $\mathbb{E}(Y) = -\sum_{i=1}^{m} P(x_i) \log P(x_i)$ = H(X)
- Therefore given *n* i.i.d r.v. $X_1, ..., X_n \sim X$, We have

$$= \frac{1}{n} \sum_{i=1}^{n} -\log P(X_i)$$

= $\frac{1}{n} \sum_{i=1}^{n} Y_i$ ($Y_i \sim Y$)
 $\rightarrow H(X) \text{ as } n \rightarrow \infty$ (WLLN)

• (The AEP is just a special case of WLLN where mean of Y_i's tends to entropy of X!)

Definition

Let X_1 , X_2 ,... be an infinite sequence of i.i.d r.v.s with same distribution as XThe typical set $A_n^{\epsilon} = \{(x_1, ..., x_n) : | (\frac{1}{n} \sum_{i=1}^n -\log P(x_i)) - H(X) | < \epsilon\}$ where x_i is the outcome of X_i for i = 1, 2, ...

Definition

Let X_1 , X_2 ,... be an infinite sequence of i.i.d r.v.s with same distribution as XThe typical set $A_n^{\epsilon} = \{(x_1, ..., x_n) : | (\frac{1}{n} \sum_{i=1}^n -\log P(x_i)) - H(X) | < \epsilon\}$ where x_i is the outcome of X_i for i = 1, 2, ...

Properties of TS:

Definition

Let X_1 , X_2 ,... be an infinite sequence of i.i.d r.v.s with same distribution as XThe typical set $A_n^{\epsilon} = \{(x_1, ..., x_n) : | (\frac{1}{n} \sum_{i=1}^n -\log P(x_i)) - H(X) | < \epsilon\}$ where x_i is the outcome of X_i for i = 1, 2, ...

Properties of TS:

• By AEP, since
$$\frac{1}{n} \sum_{i=1}^{n} -\log P(X_i) \to H(X)$$
 as $n \to \infty$,
 $P((x_1, ..., x_n) \in A_n^{\epsilon}) \to 1$ as $n \to \infty$

Definition

Let X_1 , X_2 ,... be an infinite sequence of i.i.d r.v.s with same distribution as XThe typical set $A_n^{\epsilon} = \{(x_1, ..., x_n) : | (\frac{1}{n} \sum_{i=1}^n -\log P(x_i)) - H(X) | < \epsilon\}$ where x_i is the outcome of X_i for i = 1, 2, ...

Properties of TS:

• By AEP, since
$$\frac{1}{n}\sum_{i=1}^{n} -\log P(X_i) \to H(X)$$
 as $n \to \infty$,
 $P((x_1, ..., x_n) \in A_n^{\epsilon}) \to 1$ as $n \to \infty$

Sy the definition of TS, if (x₁,...,x_n) ∈ A^ε_n then $|(\frac{1}{n}\sum_{i=1}^{n} -\log P(x_i)) - H(X)| < \epsilon$ $\Rightarrow -\frac{1}{n}\log P(x_1,...,x_n) < H(X) - \epsilon$ $\Rightarrow 2^{-n(H(X)+\epsilon)} < P(x_1,...,x_n)$

• Started with WLLN

æ

- Started with WLLN
- Proved AEP with WLLN

э

Image: A marked bit is a standard st

- Started with WLLN
- Proved AEP with WLLN
- We defined TS and noticed 2 properties

- Started with WLLN
- Proved AEP with WLLN
- We defined TS and noticed 2 properties
 - By AEP, the probability a sequence of outcomes exists in TS tends to 1 as n increases

- Started with WLLN
- Proved AEP with WLLN
- We defined TS and noticed 2 properties
 - By AEP, the probability a sequence of outcomes exists in TS tends to 1 as n increases
 - **2** By the definition of TS, if a sequence exists in the typical set, the probability it occurs is larger than $2^{-n(H(X)+\epsilon)}$

• Consider a chocolate cake that is cut into multiple pieces

- Consider a chocolate cake that is cut into multiple pieces
- Volume of the cake is smaller than x units Volume of each piece of the cake is larger than y units

- Consider a chocolate cake that is cut into multiple pieces
- Volume of the cake is smaller than x units Volume of each piece of the cake is larger than y units
- What is maximum number of pieces of chocolate cake I can possibly have?

- Consider a chocolate cake that is cut into multiple pieces
- Volume of the cake is smaller than x units Volume of each piece of the cake is larger than y units
- What is maximum number of pieces of chocolate cake I can possibly have?
- It is simply $\frac{x}{y}$!

• Consider a TS with many sequences as members

- Consider a TS with many sequences as members
- Probability a sequence exists in the set is less than 1(Trivial) Probability a sequence in the set occurring is larger than 2^{-n(H(X)+ε)} (Definition of TS)

- Consider a TS with many sequences as members
- Probability a sequence exists in the set is less than 1(Trivial) Probability a sequence in the set occurring is larger than $2^{-n(H(X)+\epsilon)}$ (Definition of TS)
- What is maximum possible number of sequences in the typical set?

• What is maximum possible number of sequences in the typical set?

- What is maximum possible number of sequences in the typical set?
- It is simply $\frac{1}{2^{-n(H(X)+\epsilon)}} = 2^{n(H(X)+\epsilon)}$

- What is maximum possible number of sequences in the typical set?
- It is simply $\frac{1}{2^{-n(H(X)+\epsilon)}} = 2^{n(H(X)+\epsilon)}$
- Important observation: We simply need n(H(X) + ε) binary bits to encode every sequence in the typical set!

Given ε > 0 and discrete r.v. X, give Alice positive integer N such that for all positive integers n > N, probability that a sequence of outcomes produced by n i.i.d. samples of X lies in the TS A_n^ε is larger than 1 - ε

- Given *ϵ* > 0 and discrete r.v. X, give Alice positive integer N such that for all positive integers *n* > N, probability that a sequence of outcomes produced by *n* i.i.d. samples of X lies in the TS A^ϵ_n is larger than 1 − *ϵ*
- 2 Receive positive integer n > N from Alice and construct TS A_n^{ϵ}

- Given *ϵ* > 0 and discrete r.v. X, give Alice positive integer N such that for all positive integers *n* > N, probability that a sequence of outcomes produced by *n* i.i.d. samples of X lies in the TS A^ϵ_n is larger than 1 − *ϵ*
- **2** Receive positive integer n > N from Alice and construct TS A_n^{ϵ}
- Sort the elements in the TS

- Given ε > 0 and discrete r.v. X, give Alice positive integer N such that for all positive integers n > N, probability that a sequence of outcomes produced by n i.i.d. samples of X lies in the TS A_n^ε is larger than 1 ε
- **2** Receive positive integer n > N from Alice and construct TS A_n^{ϵ}
- Sort the elements in the TS
- Onstruct the encoder as follows:
 - if input is in TS, output index of sequence in TS using n(H(X) + ε) binary bits. (This happens with probability of at least 1 - ε)
 - otherwise explode

Summary

1 What?

• What is the Source Coding Theorem?

2 Why?

• Why is the Source Coding Theorem important?

3 How?

• How do you prove the Source Coding Theorem?

Summary

1 What?

• What is the Source Coding Theorem?

2 Why?

• Why is the Source Coding Theorem important?

3 How?

• How do you prove the Source Coding Theorem?

"Claude Shannon, the founder of information theory, invented a way to measure 'the amount of information' in a message without defining the word 'information' itself, nor even addressing the question of the meaning of the message."

- Information, The New Language of Science (2003)

The End

Figure: Pixabay: Pixabay License

"Did you find this talk to be a piece of (chocolate) cake?"

< 1 k