
Li, Kwing Hei

Type Systems for
Functional Reactive Programming

Part II Project in Computer Science
Churchill College

2022



Declaration

I, Li Kwing Hei of Churchill College, being a candidate for Part II of the Computer Science Tripos,
hereby declare that this dissertation and the work described in it are my own work, unaided except as
may be specified below, and that the dissertation does not contain material that has already been used
to any substantial extent for a comparable purpose.
I am content for my dissertation to be made available to the students and staff of the University.

Signed

Date April 11, 2022

1



Proforma

Candidate Number: 2378F
Project Title: Type Systems for Functional Reactive Programming
Examination: Computer Science Tripos — Part II, 2022
Word Count: 120001
Line Count: 82642
Project Originators: The dissertation author and Alan Mycroft
Project Supervisor: Alan Mycroft

Original Aims of the Project

The original aims of the project were to design, implement, and evaluate a functional reactive pro-
gramming language Eva based on the Lively RaTT calculus from the paper Diamonds are not forever
– Liveness in reactive programming with guarded recursion. The project should include a parser, a
type-checker, and an interpreter. For the evaluation criteria, the dissertation author should consider
the soundness, expressiveness, and runtime efficiency of the language.

Work Completed

Exceeded core and implemented various extensions. Eva enriches Lively RaTT’s type system in
various ways, e.g. it supports parametric polymorphism and generalizes various typing rules while
preserving RaTT’s correctness guarantees. Eva supports type synonyms and modular programming.
The industrial synchronous dataflow language Lustre is implemented as a domain-specific language
within Eva via the Lust4Eva transformation. The soundness, theoretical power, and usability of Eva
are evaluated.

Special Difficulties

None.

1 Calculated using texcount (from https://app.uio.no/ifi/texcount). All code listings included.
2 Calculated using cloc (from https://github.com/AlDanial/cloc).

2

https://app.uio.no/ifi/texcount
https://github.com/AlDanial/cloc


Without safety, liveness is illusory;
Without liveness, safety is ephemeral.

- Neil D. Jones

3



Contents

1 Introduction 7

2 Preparation 9
2.1 Type Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Functional Reactive Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Language Primitives for FRP Properties . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Causality and Nakano’s Fixed-Point Operator . . . . . . . . . . . . . . . . . 11
2.3.2 Generativity and Higher-Order Primitive Recursion . . . . . . . . . . . . . . 12
2.3.3 Eliminating Space Leaks and Stable Types . . . . . . . . . . . . . . . . . . 12

2.4 Safety and Liveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Combining Safety and Liveness in RaTT . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Starting Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Requirements Analysis and Code Licensing . . . . . . . . . . . . . . . . . . . . . . 16

3 Implementation 17
3.1 Designing the Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Designing the Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Representing Nat and Arithmetic Operations . . . . . . . . . . . . . . . . . 18
3.2.2 Bool and List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Parametric Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.4 Generalizing RaTT’s Typing Rules . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Eva’s Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Type Synonyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Modular Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.3 Lustre as a Domain-Specific Language . . . . . . . . . . . . . . . . . . . . 22

3.4 Eva’s Abstract Syntax for Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Repository Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 Program Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7.1 Type-Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7.2 Type Synonym Creator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4



3.7.3 Module Importer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7.4 Lust4Eva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.8 Interpreters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.9 Execution Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.10 Implementation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Evaluation 30
4.1 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 Generativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.3 Non-Space-Leaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Theoretical Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.1 Computability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.1 One-Step Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Productive Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 Terminating Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.4 Fair Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Evaluation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Conclusion 41
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography 43

A Eva’s Specifications 46
A.1 Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.3 Judgement for Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.4 Judgement for Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.5 Typing Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
A.6 Evaluation Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.7 Step Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.8 Fundamental Theorems of Eva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.8.1 Safe Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.8.2 Lively Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5



A.8.3 Fair Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.8.4 ISafe Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.8.5 ILively Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.8.6 IFair Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

B Eva Code Samples 57
B.1 Ackermann Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
B.2 Quicksort Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

C Project Proposal 59

6



Chapter 1

Introduction

A reactive program is one that continuously interacts with the environment, e.g. software for servers,
graphical user interfaces, and control software in vehicles. Today, many critical software programs
are reactive in nature, so there is significant value in designing expressive programming languages
which enable us to implement bug-free and memory-efficient reactive programs that are also easy to
reason about. Unfortunately, designing and implementing such a programming language is widely
acknowledged to be challenging.
Traditionally, imperative languages are used to implement asynchronous reactive programs. They
provide a range of complex features like shared states and callbacks. Each of these features on its own
is challenging to reason about, and the combination of all these features only makes programs even
more error-prone and difficult to reason about.
Synchronous dataflow languages, like Lucid [36] and Lustre [19], implement reactive programs
through a network of stream-processing nodes that communicate with each other. At each clock tick,
each node produces and consumes a statically-known amount of data, thus providing strong guarantees
on time and space usages. These programs are more predictable than their asynchronous counterparts,
but their expressiveness is more limited, since the dataflow network is fixed and cannot be dynamically
modified.
Functional reactive programming (FRP) languages, first introduced by Elliot and Hudak [17],
implement synchronous reactive programs via a high level of abstraction from the functional paradigm.
By modelling time-varying values as an infinite list, programs dynamically alter the dataflow network
through features like high-order functions and signal-valued signals. It is also easy to conduct
equational reasoning on programs. However, many FRPmodels accept programs that violate expected
reactive properties like causality. It is also easy to write programs that incur significant resource leaks
as the memory management abstraction is not exposed to the programmer.
This dissertation project concerns the design, implementation, and evaluation of a practical FRP
language called Eva, whose type system is an enhanced version of a recent theoretical calculus called
Lively RaTT [7]. Eva’s type system addresses the above limitations by:

1. Certifying that all programs possess certain statically-known guarantees (subsections 2.3.1 and
2.3.2).

2. Ensuring no data resides in the heap for more than one time step during a program’s execution
(subsection 2.3.3). Programs need to be explicit in their retention of data and, hence, do not
exhibit any implicit space leaks.

3. Supporting polymorphism and treating all data as first-class citizens, making Eva expressive
enough to implement a wide spectrum of programs (subsection 3.2.3).

7



4. Providing information on both safety and liveness properties of certain reactive programs via
their types, a feature not provided by any other programming language (section 2.5).

As a significant proof of concept, I embedded Lustre, an established dataflow programming language
for implementing critical control software, as a domain-specific language within Eva via a program
transformation process called Lust4Eva (subsections 3.3.3 and 3.7.4). This allows us to write reactive
programs with Lustre’s higher abstraction model, while leveraging Eva’s type-checker and interpreter.
Multiple aspects of Eva were evaluated, including:

1. Showing Eva type-rejects all programs that are non-causal, non-generative, or space-leaky
(section 4.1).

2. Demonstrating the computational power of Eva is higher-order primitive recursive in a single
time step and Turing-complete over time (subsection 4.2.1), and that the actual time efficiency
of Eva’s operations is consistent with the theoretical complexities (subsection 4.2.2).

3. Demonstrating how Eva implements various single or multi-step programs, while highlighting
how the type of Eva programs provides information regarding its safety, liveness, or even fairness
guarantees (section 4.3).

8



Chapter 2

Preparation

In order to implement a programming language based on RaTT, I needed to understand the type
system and calculus in detail. This chapter details the various concepts RaTT is built on, as well as
the software engineering aspect of my project.

2.1 Type Systems

A type system is a set of rules defining when a computer program is valid. It assigns a piece of
information, called a type, to each inductively-defined expression, and verifies the composition of
expressions follows expected rules.
Consider the expression 𝑒1 + 𝑒2, that adds two integers. A typing rule might state that this expression
is valid if both 𝑒1 and 𝑒2 have the type Integer. Moreover, if the expression is valid, the return type
of the expression is Integer. In a simple type system, this rule might appear in the form:

addSimple
Γ ⊢ 𝑒1 : Integer Γ ⊢ 𝑒2 : Integer

Γ ⊢ 𝑒1 + 𝑒2 : Integer

This is known as an inference rule. This can be read as: if all the judgements above are true, then the
judgement at the bottom will follow. The Γ symbol is called the context, which stores the type of free
variables of the expression concerned.
Sometimes, variables in the context need to be treated differently. Consider the following Java [3]
program with one function nested within another:

void f(int n){
Function<int, int> g = (m)->{
C;
return n+m;

}
}

The statement C can modify m, but not n in general. One can encode these rules within the context
by using delimiters called tokens. The context Γ remains a list, but it may contain tokens to describe
how variables are treated differently. In RaTT and Eva, such tokens are used to introduce a notion of
time for the type-checking algorithm.
A type system is important in a programming language because it enables us to statically capture
validity aspects or invariants of programs before running them. Under a sound type system, type-

9



checked programs incur no errors during run-time. In more sophisticated type systems, types can
provide richer information about the semantic properties and guarantees of a program.

2.2 Functional Reactive Programming

Functional Reactive Programming (FRP) is a common programming paradigm for implementing
reactive programs via a high-level abstraction provided by functional programming. FRP encodes
discrete-time-varying values, called signals, as infinite lazy lists called streams. Elements of the
stream denote how the value changes through time, with the 𝑛-th element in the list denoting the value
𝑛 time steps from now. One can then define the relationship between input and output signals via
familiar functional programming building blocks, e.g. map, filter. For example, a program that
repeatedly takes a number as input and returns its successor can be implemented as:

mapSuc (x::xs) = (x+1)::(mapSuc xs)

or simply

mapSuc = map (fun n => n+1)

Under the functional paradigm, it is easier to reason about pure functions having no hidden side effects
in a modular way. Most functional languages also come with a type system, which helps detect errors
during compile time.
However, if we directly borrow the same type system from a typical functional language, one can write
valid functional programs that do not make sense when we interpret streams as signals.
Consider the following function:

badTl (x::xs) = xs

A traditional ML-like type system would type-check and accept badTl, a function that returns the tail
of a stream. However, when we interpret the stream as a signal, badTl is invalid as it violates causality
and generativity. Here, causal means that current behavior does not depend on future inputs, and
generative means that a value is eventually produced at each time step provided the program has not
halted. At time 𝑛, badTl is unable to produce an output value without knowing the input value for
time 𝑛 + 1, thus representing a non-realizable reactive function.
Another problem of FRP languages is that programs might incur memory leaks which are caused by
the language’s implementation and are not exposed to the programmer via the source code. We call
these implicit space leaks. (We allow programs to incur explicit space leaks, i.e. memory leaks that
are visible from the code, like a finite list explicitly defined to increase in size through time.) In this
dissertation, all space leaks are assumed to be implicit, unless otherwise specified.
Consider the following function:

badCons (x::xs) = (x::xs) :: (badCons (x::xs))

This is a higher-order function that receives a stream and returns a constant stream of streams. Observe
that the interpretation of badCons incurs a space leak: to produce an element of the output stream at
time 𝑛, the interpreter needs to retain all values produced by the input stream from time 1 to 𝑛− 1. We
call programs that incur space leaks, like badCons, space-leaky.
In summary, the naïve ML-like type system is not sophisticated enough to support FRP, since it allows
non-causal, non-generative or space-leaky reactive programs. One wants a richer type system that
forbids such invalid reactive programs.

10



2.3 Language Primitives for FRP Properties

Traditional type systems are not rich enough to forbid non-causal, non-generative, or space-leaky FRP
programs. Consequently, various theoretical FRP type systems have been proposed to address these
limitations. In subsections 2.3.1, 2.3.2, and 2.3.3, I discuss common language primitives which are
used to enrich type systems to achieve desired FRP properties.
Recently, Bahr proposed a theoretical calculus with a type system called Lively ReActive Type Theory,
or simply Lively RaTT [7], which possesses all the desirable language properties above. For this
dissertation, I use RaTT to denote Lively RaTT, unless otherwise specified. All typing rules presented
for the rest of the chapter are taken from the RaTT calculus.

2.3.1 Causality and Nakano’s Fixed-Point Operator

Recall that if we represent a signal as a simple stream, we can implement the non-causal function
badTl from section 2.2 representing the semantically-impossible program that returns the value it
is to be given in the next time step. In a simple type system, the type of a stream satisfies the
type isomorphism Str(A)�A×Str(A), where the tail of a stream is isomorphic to the entire stream.
Consequently, badTl has the type Str(A)→Str(A), suggesting that the tail of the stream could be
used freely, including during the current step.
Various FRP calculi, like Atkey’s and McBride’s calculus [4], prevent this with a type-based solution
proposed by Nakano [28]; A modal operator ▷ (for both types and expressions) is used to describe
data coming in the next time step, which thus cannot be used in earlier steps.
Once we introduce a notion of time on data with ▷, we can represent a signal as an enhanced stream
with a guarded-recursive type constructed by Nakano’s fixed-point operator primitive: NFix 𝛼.A×𝛼.1
When unfolded, the NFix type introduces a ▷ before the recursion variable, forming the type
A× ▷(NFix 𝛼.A×𝛼). The type of a stream then instead satisfies the stronger type isomorphism
Str(A)�A× ▷Str(A). Intuitively, the ▷ modality labels the tail of a stream to be data that can only
be accessed in the future. A simple tl function on a stream now has the type Str(A)→▷Str(A),
which although type-checks, prevents us from using the returned tail freely for other operations in this
current time step.
Once we introduce the ▷ modality, we also need delay and adv constructs to relate computations
at different time steps. The former allows us to describe future operations one step into the future,
while the latter turns the clock one step back to describe computations in the current step. To
encode this change of time through the context, we add the tick-token ✓▷ (see section 2.1) to the
right of a context when type-checking a delay expression, and remove it when type-checking an
adv expression. Whether we have a tick-token in the context or not determines whether we are type-
checking an expression in the next time step or the current one. For RaTT in particular, we can only
define operations one time step in the future but not further, i.e. there can be at most one tick-token in
the context.

delayRule
Γ,✓▷ ⊢ 𝑡 : 𝐴

Γ ⊢ delay 𝑡 : ▷ 𝐴
advRule

Γ ⊢ 𝑡 : ▷ 𝐴

Γ,✓▷, Γ
′ ⊢ adv 𝑡 : 𝐴

Some calculi, including RaTT, provide Nakano’s fixed-point combinator for recursive expressions that
span over time, denoted as nfix. Unlike a normal fixed-point for defining recursive programs which
1 For RaTT, the author re-uses the construct Fix to represent Nakano’s fixed-point operator primitive. I use NFix (and
nfix) for clarity.

11



has type (A→A)→A, this fixed-point construct for expressions has type (2▷A→A)→ 2A to ensure
that causality is enforced over time. (It uses the modality 2, which is explained below.)

nfixRule
Γ, 𝑥 : 2 ▷ 𝐴, ♯ ⊢ 𝑡 : 𝐴
Γ ⊢ nfix 𝑥.𝑡 : 2𝐴

2.3.2 Generativity and Higher-Order Primitive Recursion

In section 2.2, we defined generativity as a value being eventually produced at each time step provided
the program has not halted. In other words, the program cannot get stuck in an infinite loop in one
time step. Consequently, generative programs cannot allow arbitrary recursive functions, such as the
following badLoop function that never produces the head of the return stream given a stream of data,
as it calls itself repeatedly:

badLoop (x::xs) = badLoop (x::xs)

One trivial way of achieving generativity is by removing recursion completely. Consider the Simply
Typed Lambda Calculus [8], which is strongly-normalizing. If we restrict expressions to be encoded
within the Simply Typed Lambda Calculus, we never write programs that are non-generative! Un-
fortunately, by doing so, we sacrifice the potential to write various useful recursive programs, e.g.
factorial.
Many calculi achieve a nice balance between generativity and expressiveness by introducing a total
recursion construct for the Peano integers recNat that spans over space (meaning that the recursion
occurs within one time step). Because recNat below treats functions as first-class citizens, it is not
only primitive recursive, but higher-order primitive recursive. This means that one can implement
non-primitive recursive functions like the Ackermann function, or the quicksort function in one time
step. In fact, it is known that all recursive functions that are provably total in first-order arithmetic can
be implemented with recNat [34].

recNatRule
Γ ⊢ 𝑠 : 𝐴 Γ, 𝑥 : Nat, 𝑦 : 𝐴 ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑛 : Nat

Γ ⊢ recNat(𝑠, 𝑥 𝑦.𝑡, 𝑛) : 𝐴

In addition to representing Nat via the Peano numbers, we can represent the type of integers Int as
Nat+Nat, and the type of rational numbers Real as Int*Nat.

2.3.3 Eliminating Space Leaks and Stable Types

Recall that badCons from section 2.2 exhibits space leaks since its execution requires storing every
element seen from the input stream. We ideally want this space leak to be explicitly visible in the
source code, so programs which incur space leaks not observable from the source code level are
type-rejected.
One solution to eliminate space leaks is to use an interpreter with a two-heap store model [14]. At
each step, the program accesses values of elements stored in the previous time step from the first heap,
while storing values to be used in the next step with the second heap. During a clock tick, all elements
in the first heap are garbage-collected and the two heaps are swapped for the next step. To retain the
value of an element for more than one step, the program has to explicitly propagate the element from
one heap to the other for every step. (This is allowed as this is considered an explicit space leak, where
the action of retaining a value is obvious from the program.) This model ensures no element of the

12



two-heap store is more than one time step-old, thus eliminating all space leaks. The semantics of the
delay and adv constructs below describes how an expression interacts with the two-heap store2:

delayEval
𝑙 = alloc(𝜎) 𝜎 ≠ •

⟨delay 𝑡;𝜎⟩ ⇓ ⟨𝑙; (𝜎, 𝑙 ↦→ 𝑡)⟩
advEval

⟨𝑡; [𝑁⟩ ⇓ ⟨𝑙; [′
𝑁
⟩ ⟨[′

𝑁
(𝑙); [′

𝑁
✓[𝐿⟩ ⇓ ⟨𝑣;𝜎′⟩

⟨adv 𝑡; [𝑁✓[𝐿⟩ ⇓ ⟨𝑣;𝜎′⟩

Sometimes, we want to access time-independent data which should theoretically be accessible at any
point of a program’s execution even if it is not stored in the heap, e.g. the integer 57, or any data of
type 2A (where A can be any type). These data have the type qualifier Stable, whose type are given
by:

Stable 𝑆, 𝑆′ ::= 1 | Nat | 𝑆 + 𝑆′ | 𝑆 × 𝑆′ | 2𝐴

Intuitively, a 2 type can only be constructed without depending on time-dependent data and can be
safely accessed at any time step. The constructor and destructor for the 2 type are the unbox and box
constructs, respectively. To type-check an expression of 2 type, we introduce a second token ♯ for the
context, which separates time-independent variables on the left from the time-dependent variables on
the right. Additionally, ✓▷ can only appear on the right of ♯; anything to the right of a ✓▷ are data
defined in the next time step, and thus must be time-dependent. This means a context with both tokens
must be of the form Γ, ♯, Γ′,✓▷, Γ′′, where Γ, Γ′, Γ′′ contain no tokens.

unboxRule
Γ ⊢ 𝑡 : 2𝐴

Γ, ♯, Γ′ ⊢ unbox 𝑡 : 𝐴
boxRule

Γ, ♯ ⊢ 𝑡 : 𝐴
Γ ⊢ box 𝑡 : 2𝐴

I finally present the var rule, which describes whether an expression can access a variable in a context.
It states that a variable in a context can be accessed if and only if the variable has a Stable type, or
there is no token to the right of it. This is intuitive, since we expect some data to be accessible if the
data itself is time-independent regardless of when it is created, or if it is generated for the use of this
time step, i.e. no tokens to its right.

varRule
token-free(Γ′) ∨ 𝐴 Stable

Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴

2.4 Safety and Liveness

For a reactive system, we are often interested in two classes of properties: safety and liveness [2].
Informally, a safety property requires that nothing bad will ever happen, e.g. a system will never crash.
On the other hand, liveness states that something good will eventually happen, e.g. the system will
eventually terminate. In fact, safety and liveness properties are so fundamental and expressive that all
linear-time properties can be expressed as the intersection of safety and liveness properties.
For this dissertation, I partition safety and liveness properties into two finer classes: static and
dynamic. A static property only depends on the program’s execution in one time step; a dynamic
property is defined over multiple steps.
Recall the properties causality, generativity, and non-space-leaking from section 2.2. Causality is a
static safety property: at each time step, current computation steps do not depend on future events.
Generativity is a static liveness property: at each time step, we will eventually see a value as the output
2 The ✓ token in the advEval rule splits the store into two heaps.

13



(unless the program halted previously). Non-space-leaking is a static safety property: at each time
step, no space leaks not observable from the source code are incurred.
In addition, we are interested in two dynamic properties. Productivity is a dynamic safety property
stating that the program never terminates, and repeatedly produces a value at every time step. Termi-
nation is a dynamic liveness property stating that the program will eventually halt at some time step
in the future. Table 2.1 summarizes various properties based on their characteristics.

Safety Liveness
Static Causality, Non-space-leaking Generativity

Dynamic Productivity Termination

Table 2.1: Program properties

In FRP, a productive program is represented by a stream, while a terminating one is represented by a
finite list that spans over time3.
There are various FRP calculi that support either productive or terminating programs via their type
systems, but not both. This is because infinite and finite lists spanning over time are built differently:
the former is a co-inductive type with no base case, and the latter is an inductive one. Naïvely equating
the two types breaks the soundness of the type system, see section 2.5.

2.5 Combining Safety and Liveness in RaTT

Above, we identified various limitations of existing FRP languages. We saw language constructs
and typing rules that enable us to type-reject non-generative, non-causal, or space-leaky programs
at compile-time, while maintaining a high level of expressiveness. However, these features are not
unique to RaTT. Nakano’s fixed-point operator led to a flurry of proposals on guarded recursion, like
Clouston et al.’s Guarded _-calculus [15]. The total recursion scheme for Nat can first be found in
Gödel’s System T calculus [18]. RaTT’s method of eliminating space leaks is highly inspired by
Krishnaswami’s AdjS calculus [23].
We now turn to RaTT’s unique feature: the ability to support both productive and terminating programs
in a single system. Its typing rules enable us to encode both streams and finite lists that span over
time in one language, allowing us to assert dynamic safety and liveness properties via the type of the
programs.
As emphasized in section 2.4, from a reactive-system perspective, implementing programs with
dynamic safety properties like productivity is insufficient. We also want to implement ones with
dynamic liveness properties, e.g. terminating programs. By realizing Linear Temporal Logic (LTL) as
a type system [33], there were attempts to encode reactive programs with dynamic liveness properties,
like Jeffrey’s calculus [21] and Cave et al.’s calculus [12]. Similar to ▷, LTL has its own modality, #,
for representing data coming one time step from now. Like the tick-token ✓▷ for ▷, we also introduce
another tick-token ✓# within contexts Γ for the # modality. The constructs delay and adv in RaTT
operate on # in the same way as on ▷:

delayRule
Γ,✓m ⊢ 𝑡 : 𝐴

Γ ⊢ delay 𝑡 : m 𝐴
advRule

Γ ⊢ 𝑡 : m 𝐴 m ≤ m’ ∨ 𝐴 Limit

Γ,✓m’, Γ
′ ⊢ adv 𝑡 : 𝐴

RaTT also introduces the until operatorU from LTL, to represent finite lists that span over time. This
3We distinguish two kinds of lists: those that span over space (existing for one time step) and those that span over time.
Under this distinction, a stream is equivalent to an infinite list that spans over time.

14



inductive type comes together with two constructors, now and wait.

nowRule
Γ ⊢ 𝑡 : 𝐵

Γ ⊢ now 𝑡 : 𝐴U𝐵
waitRule

Γ ⊢ 𝑠 : 𝐴 Γ ⊢ 𝑡 : #(𝐴U𝐵)
Γ ⊢ wait 𝑠 𝑡 : 𝐴U𝐵

AU list is similar to a normal finite list from functional programming except for two aspects: Firstly,
the U list spans over time instead of space, and secondly, the now construct (similar to nil) takes
in an element of type 𝐵 as an argument. Similar to recNat, U types come with their own recursive
construct, though it is one that unfolds over time, rather than within a time step.

recUntilRule
Γ, ♯, 𝑥 : 𝐵 ⊢ 𝑠 : 𝐶 Γ, ♯, 𝑥 : 𝐴, 𝑦 : #(𝐴U𝐵), 𝑧 : #𝐶 ⊢ 𝑡 : 𝐶 Γ, ♯, Γ′ ⊢ 𝑢 : 𝐴U𝐵

Γ, ♯, Γ′ ⊢ recU (𝑥.𝑠, 𝑥 𝑦 𝑧.𝑡, 𝑢) : 𝐶

We now have two similar modalities in RaTT for describing data coming in the next time step: ▷
and #. Ideally, we want to be able to write programs that interact with both modalities safely, e.g. a
program that takes a stream as input and returns aU list containing the first 57 elements of the stream.
One might naïvely believe we can directly equate ▷ and # in one single type system to support
both productive and terminating programs. Unfortunately, this is too good to be true. Consider the
following RaTT function which has type 1UA:

wrongTerminate =
nfix finiteList. wait () (unbox finiteList)

We expect this to return a finite Until list, with the last element being an element of type A.
Unfortunately, the co-inductive property of Nakano’s fixed-point breaks the inductive property of U,
causing wrongTerminate to return an infinite stream, and violating the termination guarantee we
seek to achieve.
RaTT establishes a marriage between productive and terminating programs in one type system by
considering the # to be a submodality of ▷, i.e. # ≤ ▷, instead of directly equating them (see the
m ≤ m’ precondition in advRule). Intuitively, one can coerce any element of type#A to type ▷A freely,
but not the other round.4
Under this submodality rule, to type-check wrongTerminate, one would have to coerce (unbox
wrongTerminate) from type#(1UA) to type▷(1UA), which is invalid inRaTT, thuswrongTerminate
is type-rejected by RaTT as intended.
Though built with different constructs, a stream and anU list are both valid types of reactive programs
in RaTT. Because of this, the operational semantics of RaTT is divided into two parts: the evaluation
semantics which dictates the computational behavior of a RaTT program at each time step, and
the step semantics which captures its dynamic behavior between one time step and the next. The
evaluation semantics for a stream and an U list are the same, as how we evaluate an element in a
stream is identical to how we evaluate one in an U list. Their step semantics however differ, since
getting the second element of a stream is not the same as getting the second element of anU list.
Because of this complexity, RaTT needs multiple interpreters. It provides six reactive interpreters,
one for each type that represents a valid reactive program. These interpreters have the same evaluation
semantics, but their step semantics differ from one another. After type-checking a program, RaTT
attempts to unify its type with one of the interpreter’s corresponding types. If one matches, the
program will be interpreted by the corresponding interpreter. Otherwise, the program is treated as
4We can coerce an element of type ▷A to #A in RaTT if A is a Limit type.

15



single-step and is only evaluated into a value via the evaluation semantics, and terminates eventually
in one time step.
The six interpreters are equally split into three classes. The first two classes are for interpreting streams
andU lists, respectively. The last class is for interpreting Fair streams, which have types defined as:

Fair(A,B) = NFix 𝛼.AU(B× ▷(BU(A×𝛼)))

Interpreting a program of type Fair(A,B) produces a Fair stream where data of types A and B each
appears infinitely often. This neatly highlights the strength of RaTT, since fairness is a combination of
dynamic safety and dynamic liveness properties. (Note that the term "fairness" has various definitions
in different contexts [24].)
For each class, the first interpreter evaluates pure programs and returns the corresponding productive
stream, terminatingU-list, or Fair stream. The second interpreter is an interactive and impure variant
of the first, i.e. it repeatedly interacts with the environment/user’s input and returns the corresponding
reactive datatype. (This is similar to that in Haskell: if the program is an Integer, the result is
just printed. If the program is an IO monad type, it might accept user input which affects future
computation.)

2.6 Starting Point

I had no prior experience with implementing parsers, type-checkers, interpreters or functional pro-
gramming languages (except for a bit of OCaml in the Foundations of Computer Science course).
I studied Semantics of Programming Languages, Compiler Construction, and Computation Theory,
which were relevant to this project. I read relevant papers on RaTT-like calculi during the summer
though no project code was written before the start of Michaelmas term.

2.7 Requirements Analysis and Code Licensing

This project should consist of three components: a parser for converting the source code of Eva into
an abstract syntax tree (AST), a type-checker that type-checks the AST according to the rules of the
(possibly enhanced) RaTT’s type system, and an interpreter that executes the type-checked program
using a two-heap store model. I opted to use the spiral development model.
My choice of programming language for implementing my project is Haskell [27]. I always wanted to
master Haskell, and this project provided the perfect opportunity to explore it. In addition, Haskell is
a statically typed, purely functional programming language, and it guided the design of Eva’s syntax,
which is also statically typed and functional.
Throughout the project implementation, I used Git [13] for version control, and frequently backed up
my repository on GitHub.
This project has two dependencies, the Parsec library for implementing the parser, and the Clock
library for benchmarking. The libraries are released under a BSD-2 and BSD-3 license, respectively,
so I am not required to include their licenses when distributing the source code of my project since
none of their source or binary is included. However, if I were to distribute my project as a binary
program, I would need to include their licenses in addition to my BSD-3 license.

16



Chapter 3

Implementation

Despite its wonderful properties, RaTT was previously only a theoretical calculus, and its potential
for implementing sound and expressive reactive programs was not fully realized. Using RaTT as the
underlying calculus, I designed and implemented Eva, a practical FRP language. In this chapter,
I describe Eva’s language design choices, and the implementation of various components in Eva’s
toolchain, including but not limited to the parser, program analyzer, and interpreters.

3.1 Designing the Syntax

RaTT’s syntax is inappropriate for a programming language for various reasons. Firstly, RaTT’s
syntax involves mathematical symbols that are not typable using a standard keyboard. Moreover, the
language constructs of RaTT do not lend itself easily to a syntax-directed type-checking algorithm.
Therefore, I redesigned the syntax for Eva, taking inspiration from Haskell, OCaml, and Python.
Table 3.1 highlights some syntax differences between Eva and RaTT. Like in Haskell, some symbols
are used for both expressions and types.

Eva RaTT
fun _

> delay or ▷
@ delay or #
< adv
# box or 2
? unbox

Until U
primrec recNat
urec recU
::: Syntactic sugar for prepend on streams

Table 3.1: Syntax differences

3.2 Designing the Type System

In addition to the syntax, I improved RaTT’s type system to provide a better programming experience
with Eva. Here, I present various design choices to highlight how Eva enhances RaTT’s type system.

17



3.2.1 Representing Nat and Arithmetic Operations

In RaTT, Nat types are inductively defined in a Peano-number fashion, i.e. via the 0 and suc construc-
tors. This simplifies its proofs of correctness, but is inconvenient for programming in the real world,
since simple operations on Nat like multiplication must be built from the ground up via primrec.
This also presents huge time efficiency issues, as the time complexity of various arithmetic operations
are polynomial in the size of the operands in Peano representation, instead of logarithmic in binary
representation.
Eva overcomes these problems by optionally representing Nat types with Haskell’s Integer types in
the abstract syntax tree (AST). It also supports common operators for Nat found in most programming
languages, e.g. addition +, exponentiation ˆ. The user then need not define common arithmetic
operations from scratch, and since these operators are executed with Haskell’s default operators on
Integer, they are of complexity𝑂 (1), allowing almost all programs to be executed without significant
slow-down. A user can still force the interpreter to use the Peano representation for integers through
options, see section 3.9.
However, since RaTT does not support negative numbers, operators like minus - have to be interpreted
differently to reflect how they are expected to be implemented with primrec. In Eva, (x-y) is
equivalent to taking the maximum of 0, and the difference of x and y. Similarly, I rewrote the
semantics of operations like mod % and divide / to account for edge cases like taking mod of 0. Below
are the typing rule and evaluation semantics for % as an example:

modRule
Γ ⊢ 𝑚 : Nat Γ ⊢ 𝑛 : Nat

Γ ⊢ 𝑚%𝑛 : Nat

modEval
⟨𝑚;𝜎⟩ ⇓ ⟨𝑚′;𝜎′⟩ ⟨𝑛;𝜎′⟩ ⇓ ⟨𝑛′;𝜎′′⟩

⟨𝑚%𝑛;𝜎⟩ ⇓ ⟨𝑣;𝜎′′⟩ where 𝑣 = 𝑚′ mod (max(1, 𝑛′))

3.2.2 Bool and List

In addition to the two basic datatype primitives of RaTT: Unit1 and Nat, Eva also supports Bool for
booleans, and List for constructing finite lists that span over space.
The constructors for Bool type are true and false, and its destructor is the if...then...else
construct. I also introduced the non-short-circuiting boolean operators: and, or, and not. As an
example, the rules for the construct and are as follows:

andRule
Γ ⊢ 𝑏 : Bool Γ ⊢ 𝑐 : Bool

Γ ⊢ 𝑏 and 𝑐 : Bool

andEval
⟨𝑏;𝜎⟩ ⇓ ⟨𝑏′;𝜎′⟩ ⟨𝑐;𝜎′⟩ ⇓ ⟨𝑐′;𝜎′′⟩

⟨𝑏 and 𝑐;𝜎⟩ ⇓ ⟨𝑣;𝜎′′⟩ where 𝑣 = (𝑏′ && 𝑐′)
The List type has base constructors [] representing the empty list, and cons :: for prepending an
element in front.2 One can destruct a List with the primrec construct. Just like Nat is represented
by Haskell’s Integer, List is represented directly by Haskell’s list types. As an example, I present
primrec’s rules for List types:

primrecListRule
Γ ⊢ 𝑥𝑠 : List(𝐴) Γ ⊢ 𝑠 : 𝐵 Γ, 𝑥 : 𝐴, 𝑥𝑠′ : List(𝐴), 𝑟 : 𝐵 ⊢ 𝑡 : 𝐵

Γ ⊢ primrec 𝑥𝑠 with | [] => 𝑠 | 𝑥 :: 𝑥𝑠′, 𝑟 => 𝑡 : 𝐵
1 The type Unit is written as 1 in RaTT, which is not adopted by Eva for obvious reasons.
2 Eva also supports append ++.

18



primrecListEval1
⟨𝑥𝑠;𝜎⟩ ⇓ ⟨[];𝜎′⟩ ⟨𝑥;𝜎′⟩ ⇓ ⟨𝑣;𝜎′′⟩

⟨primrec 𝑥𝑠 with | [] => 𝑠 | 𝑥 :: 𝑥𝑠′, 𝑟 => 𝑡;𝜎⟩ ⇓ ⟨𝑣;𝜎′′⟩

primrecListEval2

⟨𝑥𝑠;𝜎⟩ ⇓ ⟨𝑣 :: 𝑣𝑠;𝜎′⟩
⟨primrec 𝑣𝑠 with | [] => 𝑠 | 𝑥 :: 𝑥𝑠′, 𝑟 => 𝑡;𝜎′⟩ ⇓ ⟨𝑟′;𝜎′′⟩

⟨𝑡 [𝑣/𝑥, 𝑣𝑠/𝑥𝑠′, 𝑟′/𝑟]⟩ ⇓ ⟨𝑤;𝜎′′′⟩
⟨primrec 𝑥𝑠 with | [] => 𝑠 | 𝑥 :: 𝑥𝑠′, 𝑟 => 𝑡;𝜎⟩ ⇓ ⟨𝑤;𝜎′′′⟩

Moreover, I introduced the equals == and not-equals != operators for certain types that admit compar-
ison. Inspired by Haskell’s type classes, I defined the type qualifier Comparable specifying the types
that are comparable. This qualifier, together with qualifiers Stable and Limit from RaTT, are used
specifically for defining type parameters of polymorphic functions, see subsection 3.2.3.

Comparable 𝐶,𝐶′ :== Unit | Nat | Bool | List(𝐶) | 𝐶+𝐶′ | 𝐶*𝐶′

3.2.3 Parametric Polymorphism

RaTT’s calculus is monomorphic. This means functions cannot be written generically, and functions
that intuitively should work on multiple data-types must be redefined for each specific type, making it
inconvenient for coding. As an example, to implement an identity function id for both Unit and Nat,
one must explicitly define two separate functions:

def idUnit x:Unit = x

def idNat x:Nat = x

Eva enhances RaTT to allow explicit parametric polymorphism in a System F manner [11]. The
universal quantification of the type must be bound to the outermost level of a function definition, i.e.
when using the def construct. For example, to define the generic id function, the user specifies the
type variables to be universally quantified in curly brackets:

def id{a} x:a = x

To use id for a certain type, say for Unit, the user just provides the type in the curly brackets similarly,
e.g. id{Unit}.
This addition of parametric polymorphism is not neccessary, for one can produce a specialized version
of a polymorphic function for each type the function is used on, similar to the monomorphisation
translation in the optimizing compiler MLton [37]. Thus, type-checking the polymorphic Eva calculus
is reduced to type-checking the monomorphic RaTT one, which is proven to be sound.
Since there are some constructs that can only be performed on expressions with certain type qualifiers,
the user has to provide the required type qualifiers of certain type parameters, e.g. the following
polymorphic compareTrue function only accepts arguments which are comparable (the function does
not type-check if the type qualifier Comparable is removed):

def compareTrue{Comparable a} x:a = (x==x)

To type-check polymorphic functions, I introduce a new context Θ, which maintains a list of polymor-
phic type variables and their type qualifiers, together with Γ for Eva’s type-checking judgements.

19



3.2.4 Generalizing RaTT’s Typing Rules

Two generalisations were made to the type system of RaTT and incorporated into Eva (these adjust-
ments were confirmed to be semantically valid by Bahr, the author of RaTT).
The first concerns the addition of the let...in... construct, that enables users to bind local
variables. This construct increases readability of long Eva programs and makes the programming
experience easier. However, adding it is not trivial. A typical computer scientist might propose
desugaring the construct as such:

let 𝑥 = 𝑒1 in 𝑒2 =⇒ (fun 𝑥 : 𝐴 => 𝑒2) 𝑒1 (with 𝐴 being the type of 𝑒1)

Though this proposal is valid, it is too restrictive. This is because RaTT’s typing rule for creating
anonymous functions can only be done under a tick-free context, preventing us from using the let
construct for computations in the next time step, as illustrated below:

Θ; Γ, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵 tick-free(Γ) Θ ⊢ 𝐴 type
Θ; Γ ⊢ fun 𝑥 : 𝐴 => 𝑒 : 𝐵

RaTT showed that this restriction is necessary for fun to prevent the function body retrieving delayed-
computation that has been garbage collected.3
However, this problem is not present for the let...in... construct as the lambda abstraction of
let...in... is immediately applied in the same time step. It turns out that let...in... can use
a more relaxed typing rule:

Θ; Γ ⊢ 𝑒 : 𝐴 Θ; Γ, 𝑥 : 𝐴 ⊢ 𝑒′ : 𝐵
Θ; Γ ⊢ let 𝑥 = 𝑒 in 𝑒′ : 𝐵

Another interesting change to RaTT’s type system is observed in the typing rules of ? and urec.
The unmodified version of the two rules share a common characteristic: the preconditions require a
stronger context than the conclusion:

Θ; Γ ⊢ 𝑒 : #𝐴
Θ; Γ, #, Γ′ ⊢ ?𝑒 : 𝐴

Θ; Γ, #, Γ′ ⊢ 𝑒 : 𝐴 Until 𝐵

Θ; Γ, #, 𝑥 : 𝐵 ⊢ 𝑒1 : 𝐶
Θ; Γ, #, 𝑥′ : 𝐴, 𝑦 : @(𝐴 Until 𝐵), 𝑧 : @𝐶 ⊢ 𝑒2 : 𝐶

Θ; Γ, #, Γ′ ⊢ urec 𝑒 with|now 𝑥 => 𝑒1|wait 𝑥′ 𝑦, 𝑧 => 𝑒2 : 𝐶

After implementing the basic type-checker and experimenting with Eva programs, I realized these
two rules were too restrictive, because Stable elements in Γ′ are removed when type-checking the
preconditions. Since Stable elements are time-independent and free from interference of the two-
heap store, expressions in the preconditions should still be able to access those elements safely. After
discussing with Bahr, he confirmed that his proofs allow the generalization of the above two rules,
allowing us to retain Stable type elements in the context when type-checking the preconditions of
both rules:

Θ; Γ, token-less-stable(Γ′) ⊢ 𝑒 : #𝐴
Θ; Γ, #, Γ′ ⊢ ?𝑒 : 𝐴

3 See the leaky function from the Simply RaTT paper [6] for more details.

20



Θ; Γ, #, Γ′ ⊢ 𝑒 : 𝐴 Until 𝐵

Θ; Γ, #, token-less-stable(Γ′), 𝑥 : 𝐵 ⊢ 𝑒1 : 𝐶
Θ; Γ, #, token-less-stable(Γ′), 𝑥′ : 𝐴, 𝑦 : @(𝐴 Until 𝐵), 𝑧 : @𝐶 ⊢ 𝑒2 : 𝐶

Θ; Γ, #, Γ′ ⊢ urec 𝑒 with|now 𝑥 => 𝑒1|wait 𝑥′ 𝑦, 𝑧 => 𝑒2 : 𝐶

3.3 Eva’s Features

In addition to having a rich type system, Eva provides various useful programming features: support
for type synonyms, support for modular programming, and hosting Lustre as an embedded domain-
specific language. I discuss these features below.

3.3.1 Type Synonyms

To make the type-checking process syntax-guided, type ascriptions are needed to annotate possibly
type-ambiguous expressions. For example, one has to specify the intended sum type of an inl
expression to remove ambiguity:

inl 57:Nat+(Unit*Bool)

However, as the types used become increasingly complex in more sophisticated programs, writing
the types in plain form becomes cumbersome. Eva allows users to define transparent polymorphic
type synonyms, so they can use specialized type synonyms when providing type ascriptions. Type
parameters for type synonyms are provided in round brackets. As an example, the template type of a
Fair stream can first be defined as a type synonym:

type Fair(a,b) =
NFix x --> a Until (b * >(b Until (a*x)))

The type ascription of a Fair stream that produces Bool and List(Unit) can then be written as:

Fair(Bool,List(Unit))

3.3.2 Modular Programming

Eva supports modular programming, allowing the user to separate large programs into multiple
modules, each containing functions and type synonyms for one aspect of the software project. Modules
can thus be reusedwhich improvesmanageability and readability of programs. This is shown to be very
useful in my evaluation when various common functions for Nat, List, and streams are implemented
in a few modules, and re-used frequently when building complex programs.
Eva’s module importer algorithm automatically imports modules forming a directed acyclic graph
in a topological sort manner and detects circular dependencies, a phenomenon that might break the
generativity of Eva programs, see subsection 4.1.2. To prevent name-clashing of imported functions
and type synonyms from different modules, a user can provide an optional alias for each module,
similar to how it is done in Haskell and Python [35]:

import Prelude.List as PL

21



3.3.3 Lustre as a Domain-Specific Language

I implemented Lustre, an industrial synchronous dataflow language, as an embedded domain-specific
language within Eva, meaning one can define Eva programs written in Lustre syntax.
After parsing Lustre code, Eva desugars the Lustre AST into an Eva one. Because Lustre and
Eva fall under fundamentally different language paradigms (dataflow and FRP, respectively), this
transformation involvesmuch complex analysis on the Lustre AST. I call this transformationLust4Eva,
which is elaborated in subsection 3.7.4.
Implementing Lustre as a domain-specific language allows the user to write productive programs more
easily with the higher level of abstraction provided by Lustre, while achieving correctness guarantees
provided by Eva’s type checker. As an example, the function runningTotal which outputs the
running total of an input stream can be implemented in Lustre syntax as follows:

{-
node runningTotal (input:int) returns (output:int);
let
output = input -> input+pre(output);
tel
-}

3.4 Eva’s Abstract Syntax for Expressions

I now present a subset of Eva’s abstract syntax (specifically for representing expressions). The full
abstract syntax rules can be found in Appendix section A.1.

𝑒 ::= 𝑥 | 𝑛 | () | fun 𝑥 : 𝑡 => 𝑒 | 𝑒 𝑒 | nfix 𝑥 : 𝑡 => 𝑒 | let 𝑥 = 𝑒 in 𝑒

| true | false | if 𝑒 then 𝑒 else 𝑒

| 𝑜1 𝑒 | 𝑒 𝑜2 𝑒 | (𝑒,𝑒) | let (𝑥,𝑥)= 𝑒 in 𝑒

| inl 𝑒 : 𝑡 | inr 𝑒 : 𝑡 | match 𝑒 with p inl 𝑥 => 𝑒 p inr 𝑥 => 𝑒

| [] : 𝑡 | [𝑒, ..., 𝑒]
| let 𝑥:::𝑥 = 𝑒 in 𝑒

| primrec 𝑒 with p 0 => 𝑒 p suc 𝑥, 𝑥 => 𝑒

| primrec 𝑒 with p [] => 𝑒 p 𝑥::𝑥, 𝑥 => 𝑒

| now 𝑒 : 𝑡 | wait 𝑒 𝑒

| urec 𝑒 with p now 𝑥 => 𝑒 p wait 𝑥 𝑥, 𝑥 => 𝑒

| into 𝑒 : 𝑡
𝑜1 ::= not | fst | snd | > | @ | < | # | ? | out | suc
𝑜2 ::= + | - | * | / | % | ^ | and | or | == | != | :: | ++ | :::

3.5 Repository Overview

Eva’s toolchain is written in Haskell, and built by Stack, a cross-platform program for developing
Haskell projects. The Eva repository is split into three main directories. The app/ directory contains
Main.hs, the main entry point of the entire Eva toolchain. The src/ directory contains various

22



modules, grouped into libraries corresponding to each stage of the toolchain. The example/ directory
contains various Eva code I wrote for evaluation, see chapter 4.
Table 3.2 presents an overview of the various directories and files of the Eva repository. Figure 3.1
presents an overview of Eva’s entire toolchain.

Folder/File Description Number
of Files

Lines of
Code

app/Main.hs Main entry point of the Eva toolchain n/a 39
src/Datatype.hs Datatypes used by the Eva toolchain n/a 245
src/MainFunctions/ Functions to detect potential execution options 1 69
src/StringFunctions/ Functions to remove comments from source

code before parsing
1 19

src/Parser/ Parsing code 5 1759
src/ProgramAnalyzer/ Analyzes parsedASTand converts it to a simpler

AST for the interpreter
5 459

src/ExpTypeConverters/ Code to resolve type synonyms in ascriptions 5 230
src/TypeChecker/ Eva’s type-checking algorithm 2 703
src/TypeFunctions/ Functions for analyzing types, e.g. determining

whether a type is Stable
7 140

src/Interpreter/ Code for the various interpreters 10 711
src/ExpFunctions/ Common functions used by interpreters, e.g.

substitution
1 50

src/PrintFunctions/ Code to display the type-checker and inter-
preter’s output onto the terminal

3 600

example/ Eva code for evaluation 42 3240
Total 82 8264

Table 3.2: Repository overview

3.6 Parser

Eva’s parser is implemented using the Haskell library Parsec [26]. Parsec is a monadic parser
combinator library, enabling the programmer to build complex parsers from small ones with monadic
operations and Haskell’s monad syntactic sugar.
One tricky issue with Parsec is that general left-recursive grammars cause parsers to loop forever. This
might seem like a problem since Eva’s grammar contains various operations which are left recursive,
e.g. +. One might propose rewriting the grammar to remove left-recursion, and add semantic actions
in the parser to translate the parsed AST back into the left-recursive one, but this is quite cumbersome.
Luckily, one can use the chainl or chainl1 combinators from the Parsec library to automatically
parse left-recursive grammars.
Thesrc/Parser/ folder contains fivemodules: ExpParser.hs for parsing expressions, TypeParser.hs
for parsing type ascriptions, VarParser.hs for parsing variable names, LustreParser.hs for pars-
ing Lustre code, and MainParser.hs which utilizes all the above parsers to form the function

23



Figure 3.1: Eva’s toolchain

mainParser. This function takes in two strings, the file name and the source code, and returns a list
of ASTs of type AExp representing the entire program.

3.7 Program Analyzer

After the parser produces a list of ASTs (each representing a top-level phrase), the program analyzer
goes through each tree and performs the corresponding analysis actions. There are three basic
types of ASTs, each produced by a different kind of top-level phrase: def, type, and import,
respectively. Each of these ASTs is processed by a different component of the program analyzer, see
subsections 3.7.1, 3.7.2, and 3.7.3. Subsection 3.7.4 describes Lust4Eva, the desugarer for the Lustre
domain-specific language.

3.7.1 Type-Checker

The type-checker is the heart of the Eva language. Responsible for type-checking functions defined
by the def keyword, it passes the AST of datatype AExp through two stages: inlining type synonyms
in ascriptions, and type-checking the overall expression.
In the first stage, the type-checker rewrites all type synonyms found in ascriptions anywhere in the
expression into the full definition with the function abExpConverter, producing an AST of type

24



BExp. The removal of type synonyms simplifies the type-checking algorithm, as we only need to
process ascriptions written in plain RaTT syntax. The type-checker also verifies that the name of
the function does not clash with previously-defined functions’ names, including those imported from
other modules.
In the second stage, the type-checker passes the simplified BExp AST through the mainTypeChecker
function, which then type-checks that the expression is valid according to Eva’s typing rules.4 In
addition to the AST, the filename and function name is also passed to the function, so if the type-check
process fails, a helpful errormessage, including the filename, function name, the source of the error, and
the reason for the error, is displayed back to the user on the terminal via the typeCheckerErrorMsg
function.
During the type-checking process, an expression might reference another function defined previously
in the same file, or in an imported module. In this case, the type-checker verifies that the referenced
function’s type follows typing rules (and that the passed type arguments for specializing polymorphic
functions match the intended type qualifiers), and if successful, inlines the AST of the referenced
function into the calling one.
The mainTypeChecker function returns two values if both stages are successful: a new AST of
the program of type CExp, specifically designed for interpreters, and the type of the program when
type-checked under the empty context. All CExp ASTs contain De Bruijn indices instead of bound
variables, and all referenced functions are inlined. Additionally, they do not contain type ascriptions
since type ascriptions do not affect semantics rules.

3.7.2 Type Synonym Creator

When a type AST is encountered as a top-level phrase, the type synonym creator defines the type
synonym for the rest of the program after passing the type synonym definition through two stages.
Firstly, it verifies that the name of the synonym does not clash with those of previously defined
synonyms or synonyms imported from other modules. Then, like how the type-checker unfolds type
synonyms in ascriptions, the type synonym creator inlines the definition of referenced type synonyms
into the definition of the current one.
The type synonym creator also checks that the definition is valid, and has no free type variables. For
example, the following type synonym invalidSynonym is invalid as the type variable d is free in the
definition:

type invalidSynonym(a,b) = NFix c --> d

3.7.3 Module Importer

When an import AST is encountered, the program analyzer runs the module importer to import
all the functions and type synonyms defined in the module located in the filepath provided. These
definitions can be used for the rest of the current source file. However, definitions imported into the
imported module from other modules are not transitively imported to the current file. As an example,
the cannotFind function in Test3.eva cannot be type-checked as x is only being imported from
Test1.eva to Test2.eva, but not to Test3.eva.
4 Some authors call this type-checking algorithm type-inference instead. I consider this process as type-checking as type
ascriptions are provided to guide the type-checker in a syntax-directed manner.

25



def x=() import Test1 import Test2
def cannotFind = x

From Test1.eva From Test2.eva From Test3.eva

Before importing a module, a number of checks are performed. Firstly, circular imports are forbidden.
The module importer achieves this by storing a stack of filepaths representing the ‘path of traversal’
as it imports files in a depth-first-search fashion. If the file to be imported is present in the stack,
a circular dependency is detected and thus the overall program analyzer aborts and returns an error
message. For example, the following two programs form a circular dependency and are not accepted
by Eva:

import Test5 import Test4

From Test4.eva From Test5.eva

The module importer also checks whether the file to be imported has ever been imported beforehand
into the current source file, and if yes, the AST is ignored, e.g. the second statement is ignored by the
program analyzer:

import SameFile as File1
//Following line is ignored by the module importer
import SameFile as File2

Afterwards, if the module to be imported has already been parsed and type-checked previously, then
the function and type synonyms definitions of the module are imported directly without parsing the
same module again. Otherwise, the module is parsed and type-checked in a similar recursive fashion.
Before importing function and type synonym definitions into the calling module, the module importer
verifies there is no name clash with previously defined or imported function and type synonyms.

3.7.4 Lust4Eva

Code written in the Lustre domain-specific language is encapsulated with the {- -} constructs. The
parser first generates a LustreExp AST for each Lustre node definition. Lust4Eva then analyzes
the statement and returns an AExp AST to be processed by the type-checker, just like a normal Eva
def statement. Type-checking Lustre programs with Eva’s type-checker allows us to leverage the
guarantees of Eva’s type system, e.g. type-checked Lustre programs are all generative.
One interesting subtlety of the Lust4Eva transformation concerns the Lustre pre construct which
accesses the previous element of a stream. Consider the following Lustre program:

{-
node invalid (input:int) returns (output:int);
let
output = pre(input);
tel
-}

This is a valid Lustre function, where given an input stream 𝑎0, 𝑎1, 𝑎2, ..., it returns null, 𝑎0, 𝑎1, ....
However, this function is not semantically valid in Eva as Eva programs must be generative, meaning
null cannot be returned for any time step.

26



Although the pre construct is not necessarily generative, it is too restrictive to forbid the use of pre as
Lustre programs like valid below can be interpreted by Eva without trouble, which takes in a stream
𝑎0, 𝑎1, 𝑎2, ..., and returns 0, 𝑎0, 𝑎1, ...:

{-
node valid (input:int) returns (output:int);
let
output = 0 -> pre(input);
tel
-}

Unfortunately, determining whether a Lustre program is semantically generative, i.e. every possible
execution of the program is generative, is undecidable5. To allow the use of pre without breaking
generativity guarantees, Lust4Eva checks that pre is never used in the first time step of a function.
In this case, Lust4Eva identifies all syntactically generative Lustre programs, i.e. every path on the
flowgraph is generative, a decidable subset of all semantically generative programs.
At the moment, we do not allow arbitrary nested pre constructs in Lustre terms, e.g. true -> if
input then pre(input) else pre(pre(input)). This is because Lust4Eva transforms Lustre
programs into a recursive Eva program where only one past element of the input streams is stored at
each step. There are two ways one can improve the transformation to support nested pre constructs:

1. The transformed Eva program stores a list of all past elements of all input streams. This incurs
a space leak for all Lustre programs, even those that can be interpreted with constant memory,
which violates the non-space-leaky guarantee of Eva.

2. Apply a similar co-effect analysis proposed by Petricek et al. [32] to infer the minimum number
of past elements the Eva program needs to store so that it can be interpreted correctly. I leave
this idea for future work.

3.8 Interpreters

After the main entry file type-checks completely, Eva interprets the main function defined in the file,
if it exists. If the main function is not found, Eva simply type-checks all functions and informs the
user that the program is valid, but no main function is found. This main function cannot be one that
is imported to the origin file, e.g. the main function defined in Test6.eva is not executed if one runs
eva Test7.eva on the command prompt:

def main = 0 import Test6

From Test6.eva From Test7.eva

The main function cannot be polymorphic because its type is used to select the appropriate interpreter.
For example, the following main function is not interpreted even though it type-checks.

def main{a}=()

Building on RaTT’s theoretical interpreters (see section 2.5), Eva supports six types of reactive
interpreters (together with a non-reactive OneStep interpreter), see table 3.3. These tree-interpreters
5 This is established through a reduction to the undecidability of equality in first-order logic.

27



all use the function evaluationInterpreter of type CExp→Store→(CExp, Store), which
implementsEva’s evaluation semantics. With the exception of theOneStep interpreter, each interpreter
also has its own function for its corresponding step semantics, which transforms the CExp and Store
at the end of each time step.

Interpreter Type of main function
Safe #Str(𝐴)
ISafe #(Str(𝐴) → Str(𝐵))
Lively #(A Until B)

ILively #(Str(𝐴) → (𝐵 Until 𝐶))
Fair #Fair(𝐴, 𝐵)
IFair #(Str(𝐴) → Fair(𝐵,𝐶))
OneStep All other types

Table 3.3: Eva’s Interpreters

The interpreter to be run for the main program depends on the type of main, and each interpreter is
proven to provide certain safety, liveness, or fairness guarantees. These guarantees are summarized
by the Fundamental Theorems of Eva, which are provided in Appendix A.8. As an example, I provide
the Fundamental Theorem of Eva’s ISafe interpreter:

Fundamental Theorem of Eva’s ISafe Interpreter If ·; · ⊢ 𝑒 : #(Str(𝐴) → Str(𝐵)), then there is
an infinite sequence of reduction steps:

⟨(?𝑒) (<𝑙0); ∅; 𝑙0⟩
𝑣1/𝑣′1
=⇒ISafe ⟨𝑒1; [1; 𝑙1⟩

𝑣2/𝑣′2
=⇒ISafe ⟨𝑒2; [2; 𝑙2⟩

𝑣3/𝑣′3
=⇒ISafe . . .

Moreover, if 𝐵 is a value type, then ·; · ⊢ 𝑣′
𝑖
: 𝐵 for all 𝑖 ≥ 1.

3.9 Execution Options

After compiling the Eva toolchain into an executable (and including it in the PATH environment
variable), one can run any Eva project by providing the file name of the main entry file (ending with
.eva extension):

eva <file> [options]

The following options are available:

--peano: Represents numbers in the Peano notation, i.e. 0 and suc constructs, instead of the
default Haskell Integer representation.

--stepNum=<n>: Pauses the program after every <n> time steps when running the Safe,
Lively, or Fair interpreters. Pressing any key resumes the program, which pauses again after
another <n> time steps. The default stepNum is 10.

--src=<dir>: Changes the source directory for importing modules to <dir>. The default
source directory is the current directory of the terminal.

--time: Outputs the time taken to interpret the program at each time step.

28



3.10 Implementation Summary

RaTT is presented in the context of a theoretical calculus, which is not rich enough to be translated
directly into a programming language. I discussed how I redesigned RaTT’s syntax and typing rules,
and implemented various features to improve the programming experience of Eva. I then discussed
implementation details of various components in Eva’s toolchain, specifically the parser, program
analyzer, and interpreters. Lastly, I explained how one runs an Eva project with the toolchain and
presented various command-line options to control Eva’s behavior.

29



Chapter 4

Evaluation

My project concerns the design of a programming language, Eva, and its type system, which does not
lend itself well to a traditional evaluation. Instead, I evaluate my project based on three aspects:

1. I investigate the soundness of Eva’s type system, which should type-reject programs that are
non-causal, non-generative, or space-leaky.

2. I evaluate Eva’s theoretical power, both on its computational power and time complexity.

3. I demonstrate that Eva is expressive enough to implement various one-step and reactive pro-
grams, and that the type of type-checked reactive programs provides safety, liveness, or fairness
guarantees of their execution.

All Eva programs presented below form a small subset of the 540 programs in the example/ directory,
which contains up to 3240 lines of Eva code, see section 3.5. These programs are obtained from
various sources, including relevant academic papers and industrial stream-processing libraries.
In this chapter, free variables in types represent universally-quantified polymorphic variables. We
define the following type synonyms:

type Str(a) = NFix x --> a*x
type Maybe(a) = Unit + a
type BStr = Str(Bool)
type Ev(a) = NFix x --> a+x
type Fair(a,b) = NFix x -->
a Until (b * >(b Until (a*x)))

All programs are run on a Xiaomi Notebook Pro with the following specifications:
Processor: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz
Memory: 16GB RAM
OS: Windows 10 Pro
GHC: -O2 optimization flag

4.1 Soundness

RaTT’s type system ensures type-checked programs are causal, generative, and non-space-leaky.
As Eva is an enriched version of the RaTT calculus, Eva should provide similar guarantees. In

30



subsections 4.1.1, 4.1.2, 4.1.3, I demonstrate that Eva type-rejects non-causal, non-generative, and
space-leaky programs, respectively.

4.1.1 Causality

Recall the badTl function in section 2.2 which is non-causal in a naïve type system as the function
returns the 𝑛 + 1-st element of the input stream at time step 𝑛. An Eva implementation is as follows:

def badTl{a} # xs:Str(a) =
let _:::xs’ = xs in
< xs’

Eva throws a type-error stating that < cannot be applied to xs’, informing us that xs’ cannot be
advanced and used in the current time step. However, the function is valid if we leave the tail of the
stream as it is:

def tl{a} # xs:Str(a) =
let _:::xs’ = xs in
xs’

This is type-checked by Eva with the type #(Str(a) -> >Str(a)). This is consistent with our
expectations as the tail of the stream has a > modality, meaning it can be used safely at the next time
step. For example, the function first0 which replaces the first element of a Nat stream with 0 can
be implemented as follows:

def first0 # xs:Str(Nat) =
let _:::xs’ = xs in
0:::xs’

Eva gives this the type #(Str(Nat) -> Str(Nat)).
For completeness, we show the @ modality obeys similar causality rules, as the following badTl’
function for Until lists does not type-check:

def badTl’{a} # xs:a Until a =
urec xs with
| now x=>now x:a Until a
| wait _ y, _ => <y

Eva correctly points out that the variable y cannot be advanced and used in the current time step. On
the other hand, a similar first0’ function for Until lists can be implemented as such:

def first0’ # xs:Nat Until Nat =
urec xs with
| now _ => now 0:Nat Until Nat
| wait _ y, _ => wait 0 y

This is type-checked by Eva with the type #(Nat Until Nat -> Nat Until Nat).

31



4.1.2 Generativity

The functions badTl and badTl’ from subsection 4.1.1 are non-generative as well, as no values can be
returned at each time step without waiting for the next element of the input stream. Eva type-rejecting
the two functions gives us additional confidence that its calculus is indeed generative.
Another design choice of Eva which helps to enforce generativity is that we disallow arbitrary mutual
recursion to prevent circular dependencies, e.g. functions cannot refer to other functions defined later
in the same module. This allows Eva to inline functions within each other in a topological sort manner,
reducing the main function into one that does not reference other definitions, including itself. Since all
basic constructs of Eva are generative, this design choice allows us to flexibly re-use previous function
definitions without breaking generativity. As an example, this non-generative function circular
cannot be type-checked, as it calls itself repeatedly:

def circular = circular

Eva type-rejects circular with the error stating it cannot reference itself in the body.
Note that Eva does not support any re-ordering analysis of function definitions so this program is
invalid:

def zero1 = zero2
def zero2 = 0

I argue this is not too restrictive as proof assistants such as Coq [9] also impose the same restrictions.
After all, computer scientists generally reason about large programs in a bottom-up manner, and one
should still be able to write Eva programs easily without being hindered significantly by this restriction.

4.1.3 Non-Space-Leaking

Recall the badCons function in section 2.2 which incurs a space leak. The Eva implementation of the
function is as follows:

def badCons{a} =
nfix loop:#(Str(a) -> Str(Str(a))) =>
fun xs:Str(a) =>
xs ::: >(<?loop xs)

Eva type-rejects this, stating that the final xs is not Stable and thus cannot be accessed in the next
time step without causing space leaks. Contrast this to simpleCons, where given a Stable type in
the first time step, a stream with the same repeated Stable element is returned:

def simpleCons{Stable a} =
nfix loop:#(a -> Str(a)) =>
fun x:a =>
x ::: >(<?loop x)

Eva type-accepts this with the type #(a -> Str(a)), given a is Stable. Unlike badCons,
SimpleCons is valid because the type a is guaranteed to be Stable, meaning it can be accessed
in the next time step freely without incurring implicit space leaks, e.g. Nat. Storing the Stable value
for future time steps only requires constant space in the store, unlike storing a stream in our badCons
example.

32



For completeness, I present the function badConsCorrected, which has the intended semantics of
badCons, but is type-accepted by Eva as the space leak is explicitly coded. We do this by explicitly
storing every element of the input stream in a list, and passing the list across each time step.1 Note
that the elements of the input stream must be Stable, otherwise the list cannot be passed across each
time step without space leaks.

def badConsCorrected{Stable a} =
let helper =
nfix loop:#(List(a) -> Str(a) -> Str(Str(a))) =>
fun l:List(a) xs:Str(a) =>
let hd = ?streamCreate{a} l xs in
let x:::xs’ = xs in
let l’ = l++[x] in
hd ::: >(<?loop l’ <xs’)

in
#(?helper []:List(a))

This is type-checked by Eva with the type #(Str(a) -> Str(Str(a))), given a is Stable.

4.2 Theoretical Power

We now examine Eva’s theoretical computational power and asymptotic time complexity. In sub-
section 4.2.1, I show that Eva’s evaluation semantics is higher-order primitive recursive, and its full
semantics is Turing-complete. In subsection 4.2.2, I show that Eva’s constructs match the theoretical
complexities, e.g. the basic arithmetic operations for binary representation are𝑂 (1), and do not depend
on the size of the operands.

4.2.1 Computability

Recall from subsection 2.3.2 that RaTT’s evaluation semantics is higher-order primitive recursion.
Though Eva has a richer type system, its evaluation semantics remains higher-order primitive recursive.
It is not Turing-complete as we need to forbid non-termination in each time step, so that Eva’s programs
are guaranteed to be generative.
To provide empirical evidence that its evaluation semantics is higher-order primitive recursive, I
implemented various one-step higher-order primitive recursive functions. For example, Eva can
implement both the Ackermann function [1] of type #(Nat -> Nat -> Nat), and the quicksort
algorithm of type #(List(Nat) -> List(Nat)), both of which are higher-order primitive recursive
functions that are not primitive recursive, see appendix B.1 and B.2, respectively.
When we consider the full semantics of Eva, the step semantics allows us to use streams to represent
the potentially non-terminating nature of computations. I demonstrate that Eva’s full semantics is
Turing-complete by implementing various Turing-complete models of computation:

1. Partial-recursive functions [22]

2. Universal register machine [25]
1 Here the pre-defined function streamCreate takes in a list and a stream, and returns the stream with the list appended
in front. Note the explicit use of ++ append to create a larger list l’.

33



3. Brainfuck interpreter [16]

Here, I show that all partial-recursive functions can be implemented in Eva. By definition, the class of
partial-recursive functions is the smallest class of functions containing the basic functions (constant,
projection, successor) and is closed under composition, primitive recursion, and minimization. Eva’s
evaluation semantics is higher-order primitive recursive, and it is trivial to see how the basic functions,
composition, and primitive recursion of functions can be implemented in one time step. To show
all partial-recursive functions are implementable, it suffices to demonstrate that we can represent
minimization via a stream.
To encode minimization, we use the type Str(Maybe(Nat)) to represent a stream. An inl ()
means we are still looking for a Nat to cause the argument function to return 0, and inr n means
n is the smallest Nat for the function to return 0. In particular, I present the minimization function
of type (#(Nat -> Nat -> Nat -> Nat) -> #(Nat -> Nat -> Nat)), that finds the smallest
first argument that causes the ternary function f to return 0 below:

def minimization2
f:#(Nat -> Nat -> Nat -> Nat) =
fun x1:Nat x2:Nat =>
let repeat =
(nfix loop:#(Nat -> Str(Maybe(Nat))) =>
fun i:Nat =>
let b = (?f i x1 x2) == 0 in
let success =
?simpleCons{Maybe(Nat)}
(inr i:Maybe(Nat)) in
let failureHd = inl ():Maybe(Nat) in
let failureTl = >(<?loop (suc i)) in
let failure = failureHd ::: failureTl in
if b then success else failure

) in
#(?repeat 0)

If no argument causes f to return 0, minimization2 returns a constant stream of inl (). Otherwise,
if n is the smallest Nat to make f return 0, the output stream returns inr n repeatedly after the n-th
time step.

4.2.2 Time Complexity

In RaTT, Nat numbers are inductively built from the Peano axioms. This means that basic operations
on Nat like addition or multiplication are not built-in constructs, but have to be defined via primitive
recursion. As an example, if we just limit ourselves to RaTT’s suc and primrec constructs, the
program for adding two numbers of type #(Nat -> Nat -> Nat) is written as:

def add # n:Nat m:Nat =
primrec n with
| 0 => m
| suc _, rest => suc rest

The function add repeats the suc operation n number of times, meaning the addition of n and m is
𝑂 (𝑛). If we use similar methods to build more complex functions, like exponential, these functions

34



are very slow, even when provided with small arguments. For example, figure 4.1 shows the time
taken2 to compute the 𝑛-th Fibonnacci number in Peano representation iteratively with the following
code (the function fib has type #Str(Nat)):

def fibHelper =
nfix repeat:#(Nat -> Nat -> Str(Nat)) =>
fun x:Nat y:Nat =>
let sum = x `?add` y in
let rest = >(<?repeat y sum) in
sum ::: rest

def fib # = ?fibHelper 0 1

20 25 30 35 40
2−9

2−6

2−3

20

23

𝑛

Ti
m
e
in
lo
g
sc
al
e
(s
)

Time measured
𝑂 (𝜙𝑛)

Figure 4.1: Time taken to compute the 𝑛-th Fibonacci number in Peano representation (averaged over
5 runs)

Note that the time complexity grows roughly as fast as the Fibonacci sequence, i.e. 𝑂 (𝜙𝑛). (The
golden ratio 𝜙 is roughly 1.618.) This is consistent with the two cost analysis equations below:

fibHelperCost(0, 𝑎, 𝑏) = 1
fibHelperCost(𝑛 + 1, 𝑎, 𝑏) = 1 + addCost(𝑎, 𝑏) + fibHelper(𝑛, 𝑏, 𝑎 + 𝑏)

In addition, Eva runs out of memory computing beyond the 40-th Fibonacci number (102334155)
since the space required to store a number in Peano representation is linear to the magnitude of the
number.
By contrast, Eva implements Nat with Haskell’s Integer numbers by default. For operations like +
or ˆ, it directly applies Haskell’s built-in𝑂 (1) operations on Haskell’s Integer, though as mentioned
in subsection 3.2.1, we rewrite certain operations to account for edge cases to preserve generativity,
e.g. dividing by 0. When we re-compute the Fibonacci numbers with Eva’s default settings, the
recorded time taken to compute each of the first 10000 Fibonacci numbers is negligible, i.e. 0.000s,
which matches the expected constant time complexity.
To show that other Eva constructs match the theoretical time complexities, I measured the time taken
to insertion-sort a random list of length 𝑛, with 𝑛 ranging from 50 to 1000, see figure 4.2, which
matches the expected time complexity of 𝑂 (𝑛2).
2 The time taken to compute the first 19 Fibonacci numbers is too insignificant to be plotted on a logarithmic graph.

35



0 200 400 600 800 1,000
0

1

2

3

4

𝑛

Ti
m
e
(s
)

Time measured
𝑂 (𝑛2)

Figure 4.2: Time taken to insertion sort a random list of integers in Haskell Integer representation
of length 𝑛 (averaged over 5 runs)

4.3 Usability

Though RaTT has clear syntax, typing and semantics rules, it is difficult to program with pure RaTT
constructs. Eva enriches RaTT’s syntax and semantics so that they lend themselves more easily to
programming. The example/ directory contains a corpus of Eva programs obtained from various
sources that illustrates Eva’s practicality and usability. These programs can be classed into two
categories:

1. One-step non-reactive programs for the OneStep interpreter

2. Multi-step reactive programs for the six reactive interpreters

In particular, the reactive programs highlight the heart of Eva’s strength – using types to verify the
dynamic safety or liveness properties of a program’s execution in a single language, by implementing
reactive programs which are productive, terminating, or fair.

4.3.1 One-Step Programs

We first consider one-step non-reactive programs, meaning the program only executes the evaluation
semantics via the OneStep interpreter, and terminates after the first time step. These programs are
classed into four modules:

1. Prelude/Nat.eva, which implements various interesting functions on Nat, e.g. logarithm and
square root.

2. Prelude/Bool.eva, which implements basic functions for Bool.

3. Prelude/List.eva, which implements a significant subset of the Haskell functions on finite
lists from the Data.List library.

4. Prelude/Maybe.eva, which implements all the Haskell functions on the Maybe monad from
the Data.Maybe library.

36



As an interesting example from Prelude/List.eva, assuming foldr is pre-defined, we can write
the subsequences function of type #(List(a) -> List(List(a))), which returns a list of all
possible subsequences of the argument list:

def subsequences{a} xs:List(a) =
let nonEmptySubsequences ys:List(a) =
primrec ys with
| [] => []:List(List(a))
| x::_, rest =>
let f zs:List(a) r:List(List(a)) =
zs::(x::zs)::r in
[x]::foldr{List(a), List(List(a))}
f []:List(List(a)) rest

in
[]:List(a) :: (nonEmptySubsequences xs)

4.3.2 Productive Programs

Most people consider reactive programs to be productive by definition, meaning that they continue to
interact with the environment forever. As a result, there is a large corpus of productive programs from
various sources I can implement and evaluate with Eva. Most of these functions in this subsection can
be interpreted by the Safe or ISafe interpreters, or they operate on types involving the > modality.
The module Modality/Stream.eva contains basic functions operating on streams which are heavily
used in many of the following modules. For example, the function natStr in the module returns the
stream of Nat numbers, i.e. 0, 1, 2,....
Modules in the Papers/ directory contain the implementation of various example programs listed in
academic papers introducing similar reactive calculi, namely:

1. AdjS [23]

2. Simply Typed Lambda Calculus with clocks and guards [4]

3. Simply RaTT [6]

4. Lively RaTT [7]

5. Rattus [5]

It is worth mentioning that by implementing these example programs from academic papers, I iden-
tified type-checking errors for three example programs in the Simply RaTT paper, namely edgeAux,
current, and counter. All three errors were reported to the main author Bahr, who subsequently
corrected them in the local copy of the paper on his website.
In addition, I implemented functions from three stream-processing programming tools, namely:

1. Reactive Banana, a Haskell higher-order FRP library, in ReactiveBanana/

2. Yampa, a Haskell arrowized FRP libary, in Yampa/

3. Milan [10], a data-oriented progamming language, in Milan/

37



Moreover, hardware circuits with a global clock can also be considered as productive programs. Pro-
grams in the Hardware/ directory illustrate how various hardware circuits can be written by Eva. For
example, the ff function of type (Bool -> #BStr -> #BStr) in Hardware/Definitions.eva
simulates the action of a D flip-flop, which delays a stream of Bool by one time step:

def ff initial:Bool xs:#BStr=
let helper = nfix loop:#(Bool -> BStr -> BStr) =>
fun current:Bool xs:BStr=>
let x:::xs’ = xs in
current ::: >(<?loop x <xs’)

in #(?helper initial ?xs)

All Lustre programs are productive (see subsection 3.3.3), and through the Lust4Eva transformation,
InterestingPrograms/LustreExamples.eva demonstrates how one can leverage Lustre’s higher
abstraction model to implement reactive programs, while achieving correctness guarantees from Eva’s
type system. Here I present the famous posClockEdge function, found in many Lustre tutorials,
which outputs true at every positive edge transition:

{-
node posClockEdge (clock:bool) returns (output:bool);
let
output = false -> clock and not pre(clock);
tel
-}

Eva type-checks this with the type #(BStr -> BStr), and runs it with the interactive ISafe inter-
preter.

4.3.3 Terminating Programs

In addition to supporting productive programs, one of RaTT’s most exciting strengths is that it
can support terminating programs with the @ modality in the same language, meaning they should
eventually halt at a certain time step in the future. Here, I show that Eva possesses this strength as
well, by presenting various programs that are executed by the Lively or ILively interpreters, or they
operate on types involving the @ modality.
To start with, I present the simple countdown function, where given the argument n, it returns the
Until list containing 𝑛, 𝑛 − 1, ..., 0, which has type (Nat -> #(Nat Until Nat)):

def countdown n:Nat =
primrec n with
| 0 => # now 0:Nat Until Nat
| suc x, rest => # wait (suc x) @(?rest)

In general, terminating programs are more difficult to program in Eva than productive ones. Under
the Curry-Howard correspondence [20], writing a program for a type is similar to finding a proof
for a theorem. With a rich type system like Eva’s, writing a program to match the intended type
seems challenging. Moreover, it is well-known that proving liveness properties, like termination, is
harder than proving safety properties, like productivity [31]. For the function countdown above, the
primrec construct implicitly "proves" that the Until list constructed is finite under the Curry-Howard
programs-as-proofs model since primrec is total.

38



However, I argue this is not a problem because many interesting programs are built by composing
various smaller constructs. After doing much of the hard work implementing a library containing
functions for terminating programs, stringing them together to form more sophisticated ones is not
too difficult a task.
To evaluate whether Eva succeeds in combining both productive and terminating programs in a single
language, it is important that one investigates how the # and ▷ modalities interact in Eva. Recall the
submodality inequality from section 2.5, i.e. # ≤ ▷, meaning we can coerce any element of type #A
to type ▷A freely, but not the other round. We can see this is the case for Eva through the following
two functions in Modality/Primitives.eva:

def atToAngle{a} # x:@a = ><x
def angleToAtWrong{a} # x:>a = @<x

Eva type-checks atToAngle with the type #(@a -> >a) as intended, which shows that one can
indeed coerce a type#A to type ▷A arbitrarily. On the other hand, Eva type-rejects angleToAtWrong
with an error message, which suggests that x cannot be coerced from a type ▷A to a type #A freely.
These two type-checking results match the expected effects of the submodality rule. For completeness,
I also show the correct implementation of angleToAt of type #(>a -> @a), which is allowed given
that the polymorphic type variable a is Limit:

def angleToAt{Limit a} # x:>a = @<x

The RaTT paper presents a large corpus of programs using both # and ▷ in interesting ways. Eva is
able to type-accept every one of them, suggesting that Eva indeed inherits RaTT’s strength in handling
both modalities in one system correctly. As an example, the timeout function of type (Nat ->
#(Ev(a) -> (Unit Until Maybe(a)))) in Papers/LivelyRaTT.eva has the effect similar to
taking the first n elements of an infinite input stream to form an Until list of length n.

4.3.4 Fair Programs

In addition to productive and terminating programs, Eva can also interpret fair programs with the
reactive Fair and IFair interpreters. Fair programs are interesting for two reasons. Firstly, fairness
is an intersection of safety and liveness properties, which highlights the elegant marriage between
both properties within Eva. Secondly, proving fairness of a program is even more challenging than
proving termination, so under the Curry-Howard programs-as-proofs model, writing a fair program
that type-checks successfully is an enthralling task. However, just like terminating programs, as long
as most of the common functions for Fair streams are first implemented in a standard library, one
can compose them together to produce more complicated ones while preserving static and dynamic
properties.
The RaTT paper and the paper by Cave et al. [12] provide a corpus of fair programs, where each of
them is type-checked and interpreted by Eva correctly, the most interesting being the fair scheduler
function sch of type #(Nat -> Str(a) -> Str(b) -> Fair(a, b))3. This function interleaves
two streams into an output Fair stream, where it selects a progressively increasing number of elements
from the first stream for each time it selects an element from the second. In particular, ?sch{a, b}
0 takes in two streams of type Str(a) and Str(b), to produce a Fair stream of the form:

b a a b a a a b a a a a b a a a a a b . . .

Though the b stream gets an infinite number of turns, its proportion in the return stream reduces
steadily to zero.
3 The type variables a and b are required to be Limit.

39



4.4 Evaluation Summary

The design and implementation of Eva achieve all the core success criteria and extensions listed in
chapter 1:

1. Matching RaTT’s theoretical correctness guarantees, Eva correctly type-rejects all invalid pro-
grams, i.e. non-causal, non-generative, or space-leaky programs.

2. I showed that Eva is highly expressive in that it is higher-order primitive recursive in one time
step, and Turing-complete over a stream, by implementing various models of computation.

3. By benchmarking Eva’s execution time on various programs, I demonstrated that its language
constructs match expected theoretical time complexities.

4. I showed that Eva can be realized as a practical programming language by implementing a large
corpus of both non-reactive and reactive programs taken from various sources.

40



Chapter 5

Conclusion

5.1 Summary

This dissertation project was a success.
I successfully enriched the theoretical RaTT calculus to form the practical programming language
Eva, by enhancing RaTT’s syntax and type system. Eva supports type synonyms and modular
programming. The industrial dataflow language Lustre was also implemented as an embedded DSL
within Eva via the Lust4Eva transformation.
I demonstrated Eva’s correctness guarantees by showing that Eva type-rejects all non-causal, non-
generative, or space-leaky programs. I also demonstrated Eva is higher-order primitive recursive in
a single time step and Turing-complete over time by implementing various models of computation,
and that Eva’s performance is consistent with the theoretical complexities via benchmarking. Most
importantly, I showed that Eva is highly expressive and implemented a plethora of programs taken from
various sources, and demonstrated how one could implement programs with their types guaranteeing
dynamic safety or liveness properties, including productive, terminating, and fair programs, and
interpret them with one of the six reactive interpreters, which is selected by their program type.

5.2 Lessons Learned

RaTT is the result of several man-years of work by various authors. Therefore, working on a project
built on RaTT required significant understanding of the literature. Although understanding the
literature enough to implement Eva was relatively straightforward, understanding it well enough to be
able to write a tutorial-style explanation of the calculus took a lot more effort. In addition, the design
and implementation of Eva cover various topics beyond RaTT, e.g. parametric polymorphism, the
Lustre dataflow paradigm. It is near impossible to explain all the concepts of Eva well enough to be
understood by a Part IB student, while fulfilling the word limit. As such, tough decisions on choosing
which topics should be dropped from the dissertation and which should be elaborated in greater detail
had to be made frequently.

5.3 Future Work

There are various directions for continuing this project.
Eva currently does not support type inference, and many expressions such as nfix and now require the

41



use of type ascriptions to guide the type-checker. One future direction is to extend Eva’s type checker
to enable type inference, so programs can be type checked without every required type ascription.
In order to use implement higher-order primitive recursive functions for a single time step, the
programmer must use the basic primrec construct to build the targeted function. For a function with
multiple arguments to be primitive-recursed on, one has to use primrec on every single argument
individually, making the code hard to write, and equally difficult to read. In addition, mutually-
recursive functions must be defined together using a "coupling" method. This is highly inconvenient,
especially if the number of mutually-recursive functions increases. A possible extension is to redesign
Eva’s syntax to allow users to define mutually-recursive functions in a more traditional fashion, and
allow the analysis and translation to the plain Eva’s calculus be performed by the type-checker, similarly
to Coq, Agda [30], and Isabelle [29].
Lastly, the Eva language is currently supported by seven high-level interpreters. This means that
we have less control over memory on the machine code level, and we are unable to confidently
guarantee the elimination of space leaks on a lower-level even though it is the case on the abstract
data level. In addition, we do not perform any optimization on the machine code to increase its time
and space efficiency. It would be great to investigate whether Eva programs can be directly compiled
into machine code, or even to hardware, thus allowing us to reason about memory usage better and
introduce interesting compiler optimizations to the compiled machine-code.
Bjarne Stroustrup, the inventor of C++, once said, "There are only two kinds of languages: the ones
people complain about and the ones nobody uses." I look forward to a future where Eva is disliked by
more computer scientists.

42



Bibliography

[1] W. Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen. Mathematische Annalen, 99:118–
133, 1928.

[2] B. Alpern and F. Schneider. Recognizing safety and liveness. Distributed Computing, 2:117–126,
Sep 1987.

[3] K. Arnold, J. Gosling, and D. Holmes. The Java programming language. Addison Wesley
Professional, 2005.

[4] R. Atkey and C. McBride. Productive coprogramming with guarded recursion. SIGPLAN Not.,
48(9):197–208, Sep 2013.

[5] P. Bahr. Modal FRP for all: Functional reactive programming without space leaks in Haskell.
Submitted to JFP, July 2021.

[6] P. Bahr, C. Graulund, and R. E. Møgelberg. Simply RaTT: A Fitch-style modal calculus for
reactive programming. CoRR, abs/1903.05879, 2019.

[7] P. Bahr, C. Graulund, and R. E. Møgelberg. Diamonds are not forever: Liveness in reactive
programming with guarded recursion. Proc. ACM Program. Lang., 5(POPL), Jan. 2021.

[8] H. Barendregt, W. Dekkers, and R. Statman. Lambda Calculus with Types. Perspectives in Logic.
Cambridge University Press, 2013.

[9] Y. Bertot and P. Castéran. Interactive theorem proving and program development: Coq’Art: the
calculus of inductive constructions. Springer Science & Business Media, 2013.

[10] T. Borchert. Milan: An evolution of data-oriented programming. Tom Borchert’s Programming
Blog, 2020. https://tborchertblog.wordpress.com/2020/02/13/28/.

[11] K. B. Bruce, A. R. Meyer, and J. C. Mitchell. The semantics of second-order lambda calculus.
Information and Computation, 85(1):76–134, 1990.

[12] A. Cave, F. Ferreira, P. Panangaden, and B. Pientka. Fair reactive programming. SIGPLAN Not.,
49(1):361–372, Jan 2014.

[13] S. Chacon and B. Straub. Pro git. Apress, 2014.

[14] C. J. Cheney. A nonrecursive list compacting algorithm. Commun. ACM, 13(11):677–678, Nov
1970.

[15] R. Clouston, A. Bizjak, H. B. Grathwohl, and L. Birkedal. The guarded lambda-calculus:
Programming and reasoningwith guarded recursion for coinductive types. Log. Methods Comput.
Sci., 12(3), 2016.

43

https://tborchertblog.wordpress.com/2020/02/13/28/


[16] B. Easter. Fully human, fully machine: Rhetorics of digital disembodiment in programming.
Rhetoric Review, 39(2):202–215, 2020.

[17] C. Elliott and P. Hudak. Functional reactive animation. SIGPLAN Not., 32(8):263–273, Aug
1997.

[18] K. Gödel. On an extension of finitary mathematics which has not yet been used. In S. Feferman,
J. Dawson, and S. Kleene, editors, Kurt Gödel: Collected Works Vol. Ii, pages 271–284. Oxford
University Press, 1972.

[19] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow programming
language LUSTRE. Proceedings of the IEEE, 79:1305 – 1320, Oct 1991.

[20] W. A. Howard. The formulae-as-types notion of construction. In H. Curry, H. B., S. J. Roger,
and P. Jonathan, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and
Formalism. Academic Press, 1980.

[21] A. Jeffrey. LTL types FRP: Linear-time temporal logic propositions as types, proofs as functional
reactive programs. In Proceedings of the Sixth Workshop on Programming Languages Meets
Program Verification, PLPV ’12, page 49–60, New York, NY, USA, 2012. Association for
Computing Machinery.

[22] S. C. Kleene. _-definability and recursiveness. Duke Mathematical Journal, 2(2):340 – 353,
1936.

[23] N. R. Krishnaswami. Higher-order functional reactive programming without spacetime leaks. In
Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’13, page 221–232, New York, NY, USA, 2013. Association for Computing Machinery.

[24] M. Kwiatkowska. Survey of fairness notions. Information & Software Technology, 31:371–386,
1989.

[25] J. Lambek. How to program an infinite abacus. Canadian Mathematical Bulletin, 4(3):295–302,
1961.

[26] D. Leijen and E. Meijer. Parsec: Direct style monadic parser combinators for the real world.
Technical Report UU-CS-2001-27, Departement of Computer Science, Universiteit Utrecht,
July 2001. User Modeling 2007, 11th International Conference, UM 2007, Corfu, Greece, June
25-29, 2007.

[27] S. Marlow. Haskell 2010 language report. Available online http://www. haskell. org/(May 2011),
2010.

[28] H. Nakano. A modality for recursion. In Proceedings Fifteenth Annual IEEE Symposium on
Logic in Computer Science (Cat. No.99CB36332), pages 255–266, 2000.

[29] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: a proof assistant for higher-order
logic, volume 2283. Springer Science & Business Media, 2002.

[30] U. Norell. Towards a practical programming language based on dependent type theory. In PhD
Thesis - Chalmers University of Technology, 2007.

[31] S. Owicki and L. Lamport. Proving liveness properties of concurrent programs. ACM Trans.
Program. Lang. Syst., 4(3):455–495, Jul 1982.

44



[32] T. Petricek, D. Orchard, and A. Mycroft. Coeffects: A calculus of context-dependent compu-
tation. In Proceedings of International Conference on Functional Programming, ICFP 2014,
2014.

[33] A. Pnueli. The temporal logic of programs. In 2013 IEEE 54th Annual Symposium on Foundations
of Computer Science, pages 46–57, Los Alamitos, CA, USA, Oct 1977. IEEE Computer Society.

[34] J. Smith. The identification of propositions and types in Martin-L öf’s type theory: A pro-
gramming example. International Conference on Fundamentals of Computation Theory, pages
445–456, 1983.

[35] G. Van Rossum and F. L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA,
2009.

[36] W. W. Wadge and E. A. Ashcroft. LUCID, the Dataflow Programming Language. Academic
Press Professional, Inc., USA, 1985.

[37] S. Weeks. Whole-program compilation in MLton. In Proceedings of the 2006 Workshop on ML,
ML ’06, page 1, New York, NY, USA, 2006. Association for Computing Machinery.

45



Appendix A

Eva’s Specifications

A.1 Abstract Syntax

⟨program⟩ ::= ⟨stmt⟩ | ⟨program⟩ ⟨stmt⟩ | ⟨program⟩ ‘{-’ ⟨lustre-stmts⟩ ‘-}’

⟨stmt⟩ ::= ⟨def-stmt⟩ | ⟨type-stmt⟩ | ⟨import-stmt⟩

⟨def-stmt⟩ ::= ‘def’ ⟨lower-str⟩ ⟨opt-curly-parameters⟩ ⟨opt-arguments⟩ ⟨opt-box⟩ ⟨opt-arguments⟩
‘=’ ⟨exp⟩

⟨opt-curly-parameters⟩ ::= ‘’ | ‘{’ ⟨parameters⟩ ‘}’

⟨parameters⟩ ::= ⟨parameter⟩ | ⟨parameters⟩ ‘,’ ⟨parameter⟩

⟨parameter⟩ ::= ⟨opt-property⟩ ⟨lower-str⟩

⟨opt-property⟩ ::= ‘’ |‘Stable’ | ‘Limit’ | ‘Stable Limit’ | ‘Comparable’

⟨opt-arguments⟩ ::= ‘’ | ⟨arguments⟩

⟨arguments⟩ ::= ⟨argument⟩ | ⟨argument⟩ ⟨arguments⟩

⟨argument⟩ ::= ⟨lower-str⟩ ⟨ascription⟩

⟨opt-box⟩ ::= ‘’ | ‘#’

⟨exp⟩ ::= ⟨opt-dotted-lower-str⟩ ⟨opt-curly-type-list⟩ | ⟨number⟩ | ‘()’
| ‘fun’ ⟨arguments⟩ ‘=>’ ⟨exp⟩
| ⟨exp⟩ ⟨exp⟩
| ‘nfix’ ⟨lower-str⟩ ⟨ascription⟩ ‘=>’ ⟨exp⟩
| ‘let’ ⟨lower-str⟩ ⟨opt-arguments⟩ ⟨opt-box⟩ ⟨opt-arguments⟩ ‘=’ ⟨exp⟩ ‘in’ ⟨exp⟩
| ⟨exp⟩ ‘‘’ ⟨exp⟩ ‘‘’ ⟨exp⟩ | ‘true’ | ‘false’
| ‘if’ ⟨exp⟩ ‘then’ ⟨exp⟩ ‘else’ ⟨exp⟩
| ⟨unary-exp-op⟩ ⟨exp⟩ | ⟨exp⟩ ⟨binary-exp-op⟩ ⟨exp⟩
| ‘(’ ⟨exp⟩ ‘,’ ⟨exp⟩ ‘)’
| ‘let’ ‘(’ ⟨wc-var⟩ ‘,’ ⟨wc-var⟩ ‘)’ ‘=’ ⟨exp⟩ ‘in’ ⟨exp⟩
| ‘inl’ ⟨exp⟩ ⟨ascription⟩ | ‘inr’ ⟨exp⟩ ⟨ascription⟩
| ‘match’ ⟨exp⟩ ‘with’ ‘|’ ‘inl’ ⟨wc-var⟩ ‘=>’ ⟨exp⟩ ‘|’ ‘inr’ ⟨wc-var⟩ ‘=>’ ⟨exp⟩
| ‘[]’ ⟨ascription⟩ | ‘[’ ⟨list-elems⟩ ‘]’
| ‘let’ ⟨wc-var⟩ ‘:::’ ⟨wc-var⟩ ‘=’ ⟨exp⟩ ‘in’ ⟨exp⟩

46



| ‘primrec’ ⟨exp⟩ ‘with’ ‘|’ ‘0’ ‘=>’ ⟨exp⟩ ‘|’ ‘suc’ ⟨wc-var⟩ ‘,’ ⟨wc-var⟩ ‘=>’ ⟨exp⟩
| ‘primrec’ ⟨exp⟩ ‘with’ ‘|’ ‘[]’ ‘=>’ ⟨exp⟩ ‘|’ ⟨wc-var⟩ ‘::’ ⟨wc-var⟩ ‘,’ ⟨wc-var⟩ ‘=>’

⟨exp⟩
| ‘now’ ⟨exp⟩ ⟨ascription⟩ | ‘wait’ ⟨exp⟩ ⟨exp⟩
| ‘urec’ ⟨exp⟩ ‘with’ ‘|’ ‘now’ ⟨wc-var⟩ ‘=>’ ⟨exp⟩ ‘|’ ‘wait’ ⟨wc-var⟩ ⟨wc-var⟩ ‘,’

⟨wc-var⟩ ‘=>’ ⟨exp⟩
| ‘into’ ⟨exp⟩ ⟨ascription⟩

⟨opt-dotted-lower-str⟩ ::= ⟨lower-str⟩ | ⟨upper-str⟩ ‘.’ ⟨lower-str⟩

⟨opt-curly-type-list⟩ ::= ‘’ | ‘{’ ⟨type-list⟩ ‘}’

⟨type-list⟩ ::= ⟨type⟩ | ⟨type⟩ ‘,’ ⟨type-list⟩

⟨unary-exp-op⟩ ::= ‘not’ | ‘fst’ | ‘snd’ | ‘>’ | ‘@’ | ‘<’ | ‘#’ | ‘?’ | ‘out’ | ‘suc’

⟨binary-exp-op⟩ ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’ | ‘^’ | ‘and’ | ‘or’ | ‘==’ | ‘!=’ | ‘::’ | ‘++’ | ‘:::’

⟨list-elems⟩ ::= ⟨exp⟩ | ⟨exp⟩ ‘,’ ⟨list-elems⟩

⟨wc-var⟩ ::= ‘_’ | ⟨lower-str⟩

⟨ascription⟩ ::= ‘:’ ⟨type⟩

⟨type-stmt⟩ ::= ‘type’ ⟨upper-str⟩ ⟨opt-round-arguments⟩ ‘=’ ⟨type⟩

⟨opt-round-arguments⟩ ::= ‘’ | ‘(’ ⟨lower-str-list⟩ ‘)’

⟨lower-str-list⟩ ::= ⟨lower-str⟩ | ⟨lower-str⟩ ‘,’ ⟨lower-str-list⟩

⟨type⟩ ::= ⟨opt-dotted-upper-str⟩ ⟨opt-round-type-list⟩ | ⟨lower-str⟩ | ‘(’ ⟨type⟩ ‘)’
| ‘Unit’ | ‘Nat’ | ‘Bool’ | ‘List’ ‘(’ ⟨type⟩ ‘)’
| ‘NFix’ ⟨lower-str⟩ ‘-->’ ⟨type⟩
| ⟨unary-type-op⟩ ⟨type | <type⟩ ⟨binary-type-op⟩ ⟨type⟩

⟨opt-round-type-list⟩ ::= ‘’ | ‘(’ ⟨type-list⟩ ‘)’

⟨opt-dotted-upper-str⟩ ::= ⟨upper-str⟩ | ⟨upper-str⟩ ‘.’ ⟨upper-str⟩

⟨unary-type-op⟩ ::= ‘>’ | ‘@’ | ‘#’

⟨binary-type-op⟩ ::= ‘->’ | ‘Until’ | ‘+’ | ‘*’

⟨import-stmt⟩ ::= ‘import’ ⟨file-path⟩ ⟨opt-name⟩

⟨opt-name⟩ ::= ‘’ | ‘as’ ⟨upper-str⟩

⟨lustre-stmts⟩ ::= ‘’ | ⟨lustre-stmts⟩ ⟨lustre-stmt⟩

⟨lustre-stmt⟩ ::= ‘node’ ⟨lower-str⟩ ‘(’ ⟨lustre-args⟩ ‘)’ ‘returns’ ⟨lustre-var-ascrip⟩ ‘;’ ‘let’
⟨lustre-body⟩ ‘tel’

⟨lustre-args⟩ ::= ‘’ | ⟨lustre-args-multiple⟩

⟨lustre-args-multiple⟩ ::= ⟨lustre-var-ascrip⟩ | ⟨lustre-args-multiple⟩ ‘,’ ⟨lustre-var-ascrip⟩

47



⟨lustre-var-ascrip⟩ ::= ⟨lower-str⟩ ‘:’ ⟨lustre-type⟩

⟨lustre-type⟩ ::= ‘int’ | ‘bool’

⟨lustre-body⟩ ::= ⟨lower-str⟩ ‘=’ ⟨lustre-exp⟩ ‘;’ | ⟨lower-str⟩ ‘=’ ⟨lustre-exp⟩ ‘->’ ⟨lustre-exp⟩ ‘;’

⟨lustre-exp⟩ ::= ⟨number⟩ | ⟨lower-str⟩ | ‘pre(’ ⟨lower-str⟩ ‘)’ | ⟨lustre-exp⟩ ⟨lustre-bin-op⟩ ⟨lustre-exp⟩
| ‘not’ ⟨lustre-exp⟩ | ‘true’ |‘false’ | ‘if’ ⟨lustre-exp⟩ ‘then’ ⟨lustre-exp⟩ ‘else’
⟨lustre-exp⟩

⟨lustre-bin-op⟩ ::= ‘=’ | ‘<’ | ‘>’ | ‘or’ | ‘and’ | ‘+’ | ‘-’ | ‘*’ | ‘/’

A.2 Definitions

Types 𝐴 𝐵 𝐶 ::= 𝑥 | Unit | Nat | Bool | List(𝐴) | NFix 𝑥 −→ 𝐴

| >𝐴 | @𝐴 | #𝐴 | 𝐴 → 𝐴 | 𝐴 Until 𝐴 | 𝐴 + 𝐴 | 𝐴 ∗ 𝐴

Expressions 𝑒 ::= 𝑥 | 𝑛 | () | fun 𝑥 : 𝐴 => 𝑒 | 𝑒 𝑒 | let 𝑥 = 𝑒 in 𝑒

| 𝑒 + 𝑒 | 𝑒 − 𝑒 | 𝑒 ∗ 𝑒 | 𝑒/𝑒 | 𝑒%𝑒 | 𝑒^𝑒 | suc 𝑒

| primrec 𝑒 with|0 => 𝑒|suc 𝑥, 𝑥 => 𝑒

| true | false | if 𝑒 then 𝑒 else 𝑒 | 𝑒 and 𝑒 | 𝑒 or 𝑒 | not 𝑒

| 𝑒 == 𝑒 | 𝑒! = 𝑒

| (𝑒, 𝑒) | fst 𝑒 | snd 𝑒

| inl 𝑒 : 𝐴 | inr 𝑒 : 𝐴 | match 𝑒 with|inl 𝑥 => 𝑒|inr 𝑥 => 𝑒

| [] : 𝐴 | [𝑒, . . . , 𝑒] | 𝑒 :: 𝑒 | 𝑒 + +𝑒
| primrec 𝑒 with|[] => 𝑒|𝑥 :: 𝑥, 𝑥 => 𝑒

| >𝑒 | @𝑒 | <𝑒 | #𝑒 | ?𝑒 | nfix 𝑥 : 𝐴 => 𝑒 | 𝑒:::𝑒 | let 𝑥:::𝑥 = 𝑒 in 𝑒

| now 𝑒 : 𝐴 | wait 𝑒 𝑒 | urec 𝑒 with|now => 𝑒|wait 𝑥 𝑥, 𝑥 => 𝑒

| into 𝑒 : 𝐴 | out 𝑒

Type Qualifiers 𝜔 ::= None | Stable | Limit | Comparable | LimitStable
Type Contexts Θ ::= · | Θ, (𝑥, 𝜔)

Term Variable Contexts Γ ::= · | Γ, 𝑥 : 𝐴 | Γ, # | Γ,✓> | Γ,✓@
Values 𝑣 𝑤 ::= () | 𝑛 | fun 𝑥 : 𝐴 => 𝑒 | (𝑣, 𝑣) | inl 𝑣 | inr 𝑣

| true | false | [] : 𝐴 | [𝑣, . . . , 𝑣]
| #𝑒 | @𝑒 | >𝑒 | nfix 𝑥 : 𝐴 => 𝑒 | 𝑙 | into 𝑣 : 𝐴 | now 𝑣 : 𝐴 | wait 𝑣 𝑣

Heaps [ ::= {𝑙 ↦→ 𝑣, . . . , 𝑙 ↦→ 𝑣}
Stores 𝜎 ::= · | [ | [✓[

Value types𝑈 𝑉 ::= Unit | Nat | Bool | List(𝑈) | 𝑈 ∗𝑈 | 𝑈 +𝑈

Str(𝐴) ::= NFix 𝑥 −→ (𝐴 ∗ 𝑥)
Fair(𝐴, 𝐵) ::= NFix 𝑥 −→ 𝐴 Until (𝐵 ∗ >(𝐵 Until (𝐴 ∗ 𝑥)))

48



A.3 Judgement for Types

(𝑥, 𝜔) ∈ Θ

Θ ⊢ 𝑥 type

Θ ⊢ Unit/Nat/Bool type
Θ ⊢ 𝐴 type

Θ ⊢ List(𝐴)/>𝐴/@𝐴/#𝐴 type
Θ, (𝑥, Limit) ⊢ 𝐴 type
Θ ⊢ NFix 𝑥 −→ 𝐴 type

Θ ⊢ 𝐴 type Θ ⊢ 𝐴′ type
Θ ⊢ 𝐴 Until 𝐴′/𝐴 + 𝐴′/𝐴 ∗ 𝐴′ type

(𝑥, 𝜔) ∈ Θ 𝜔 ∈ {Stable, LimitStable, Comparable}
Θ ⊢ 𝑥 stable

Θ ⊢ Unit/Nat/Bool/#𝐴 Stable
Θ ⊢ 𝐴 stable

Θ ⊢ List(𝐴) stable
Θ ⊢ 𝐴 stable Θ ⊢ 𝐴′ stable

Θ ⊢ 𝐴 + 𝐴′/𝐴 ∗ 𝐴′ stable

(𝑥, 𝜔) ∈ Θ 𝜔 ∈ {Limit, LimitStable, Comparable}
Θ ⊢ 𝑥 limit

Θ ⊢ Unit/Nat/Bool limit
Θ ⊢ 𝐴 limit

Θ ⊢ List(𝐴)/@𝐴/#𝐴 limit
Θ, (𝑥, Limit) ⊢ 𝐴 limit
Θ ⊢ NFix 𝑥 −→ 𝐴 limit

Θ ⊢ 𝐴 type1
Θ ⊢ >𝐴 limit

Θ ⊢ 𝐴 type1 Θ ⊢ 𝐴′ limit
Θ ⊢ 𝐴 → 𝐴′ limit

Θ ⊢ 𝐴 limit Θ ⊢ 𝐴′ limit
Θ ⊢ 𝐴 + 𝐴′/𝐴 ∗ 𝐴′ limit

(𝑥, 𝜔) ∈ Θ 𝜔 ∈ {Comparable}
Θ ⊢ 𝑥 comparable

Θ ⊢ Unit/Nat/Bool comparable
Θ ⊢ 𝐴 comparable

Θ ⊢ List(𝐴) comparable

Θ ⊢ 𝐴 comparable Θ ⊢ 𝐴′ comparable
Θ ⊢ 𝐴 + 𝐴′/𝐴 ∗ 𝐴′ comparable

A.4 Judgement for Context

Θ ⊢ · ctx
Θ ⊢ Γ ctx Θ ⊢ 𝐴 type

Θ ⊢ Γ, 𝑥 : 𝐴 ctx
Θ ⊢ Γ ctx # ∉ Γ

Θ ⊢ Γ, # ctx

Θ ⊢ Γ ctx # ∈ Γ tick-free(Γ)
Θ ⊢ Γ,✓> ctx

Θ ⊢ Γ ctx # ∈ Γ tick-free(Γ)
Θ ⊢ Γ,✓@ ctx

1 Not a typo

49



A.5 Typing Rules

token-free(Γ′) ∨ Θ ⊢ 𝐴 stable
Θ; Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴 Θ; Γ ⊢ 𝑛 : Nat Θ; Γ ⊢ () : Nat

Θ; Γ, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵
tick-free(Γ)
Θ ⊢ 𝐴 type

Θ; Γ ⊢ fun 𝑥 : 𝐴 => 𝑒 : 𝐵
Θ; Γ ⊢ 𝑒 : 𝐴 → 𝐵 Θ; Γ ⊢ 𝑒′ : 𝐴

Θ; Γ ⊢ 𝑒 𝑒′ : 𝐵

Θ; Γ ⊢ 𝑒 : 𝐴
Θ; Γ, 𝑥 : 𝐴 ⊢ 𝑒′ : 𝐵

Θ; Γ ⊢ let 𝑥 = 𝑒 in 𝑒′ : 𝐵

Θ; Γ ⊢ 𝑒 : Nat
Θ; Γ ⊢ 𝑒′ : Nat

𝑜𝑝 ∈ {+,−, ∗, /,%, ^}
Θ; Γ ⊢ 𝑒 𝑜𝑝 𝑒′ : Nat

Θ; Γ ⊢ 𝑒 : Nat
Θ; Γ ⊢ suc 𝑒 : Nat

Θ; Γ ⊢ 𝑒 : Nat
Θ; Γ ⊢ 𝑒1 : 𝐴

Θ; Γ, 𝑥 : Nat, 𝑦 : 𝐴 ⊢ 𝑒2 : 𝐴
Θ; Γ ⊢ primrec 𝑒 with |0 => 𝑒1|suc 𝑥, 𝑦 => 𝑒2 : 𝐴

Θ; Γ ⊢ true : Bool Θ; Γ ⊢ false : Bool

Θ; Γ ⊢ 𝑒 : Bool
Θ; Γ ⊢ 𝑒1 : 𝐴
Θ; Γ ⊢ 𝑒2 : 𝐴

Θ; Γ ⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝐴

Θ; Γ ⊢ 𝑒1 : Bool
Θ; Γ ⊢ 𝑒2 : Bool

Θ; Γ ⊢ 𝑒1 and 𝑒2 : Bool

Θ; Γ ⊢ 𝑒1 : Bool
Θ; Γ ⊢ 𝑒2 : Bool

Θ; Γ ⊢ 𝑒1 or 𝑒2 : Bool
Θ; Γ ⊢ 𝑒 : Bool

Θ; Γ ⊢ not 𝑒 : Bool

Θ; Γ ⊢ 𝑒1 : 𝐴
Θ; Γ ⊢ 𝑒2 : 𝐴

Θ ⊢ 𝐴 comparable
Θ; Γ ⊢ 𝑒1 == 𝑒2 : Bool

Θ; Γ ⊢ 𝑒1 : 𝐴
Θ; Γ ⊢ 𝑒2 : 𝐴

Θ ⊢ 𝐴 comparable
Θ; Γ ⊢ 𝑒1! = 𝑒2 : Bool

Θ; Γ ⊢ 𝑒1 : 𝐴
Θ; Γ ⊢ 𝑒2 : 𝐵

Θ; Γ ⊢ (𝑒1, 𝑒2) : 𝐴 ∗ 𝐵
Θ; Γ ⊢ 𝑒 : 𝐴 ∗ 𝐵
Θ; Γ ⊢ fst 𝑒 : 𝐴

Θ; Γ ⊢ 𝑒 : 𝐴 ∗ 𝐵
Θ; Γ ⊢ snd 𝑒 : 𝐵

50



Θ; Γ ⊢ 𝑒 : 𝐴
Θ ⊢ 𝐴 + 𝐵 type

Θ; Γ ⊢ inl 𝑒 : 𝐴 + 𝐵 : 𝐴 + 𝐵

Θ; Γ ⊢ 𝑒 : 𝐵
Θ ⊢ 𝐴 + 𝐵 type

Θ; Γ ⊢ inr 𝑒 : 𝐴 + 𝐵 : 𝐴 + 𝐵

Θ; Γ ⊢ 𝑒 : 𝐴 + 𝐵

Θ; Γ, 𝑥 : 𝐴 ⊢ 𝑒1 : 𝐶
Θ; Γ, 𝑦 : 𝐵 ⊢ 𝑒2 : 𝐶

Θ; Γ ⊢ match 𝑒 with|inl 𝑥 => 𝑒1|inr 𝑦 => 𝑒2 : 𝐶

Θ ⊢ List(𝐴) type
Θ; Γ ⊢ [] : List(𝐴) : List(𝐴)

Θ; Γ ⊢ 𝑒𝑖 : 𝐴 (∀𝑖 = 1, . . . , 𝑛)
Θ; Γ ⊢ [𝑒1, . . . , 𝑒𝑛] : List(𝐴)

Θ; Γ ⊢ 𝑒1 : 𝐴
Θ; Γ ⊢ 𝑒2 : List(𝐴)

Θ; Γ ⊢ 𝑒1::𝑒2 : List(𝐴)

Θ; Γ ⊢ 𝑒1 : List(𝐴)
Θ; Γ ⊢ 𝑒2 : List(𝐴)

Θ; Γ ⊢ 𝑒1++𝑒2 : List(𝐴)

Θ; Γ ⊢ 𝑒 : List(𝐴)
Θ; Γ ⊢ 𝑒1 : 𝐵

Θ; Γ, 𝑥 : 𝐴, 𝑦 : List(𝐴), 𝑧 : 𝐵 ⊢ 𝑒2 : 𝐵
Θ; Γ ⊢ primrec 𝑒 with|[] => 𝑒1|𝑥::𝑦, 𝑧 => 𝑒2 : 𝐵

Θ; Γ,✓> ⊢ 𝑒 : 𝐴
Θ; Γ ⊢ >𝑒 : >𝐴

Θ; Γ,✓@ ⊢ 𝑒 : 𝐴
Θ; Γ ⊢ @𝑒 : @𝐴

Θ; Γ ⊢ 𝑒 : 𝑚 𝐴

𝑚 ≤ 𝑚′ ∨ Θ ⊢ 𝐴 limit
Θ; Γ,✓𝑚′, Γ′ ⊢ <𝑒 : 𝐴

(where @ ≤ >)

Θ; Γ, token-less-stable(Γ′) ⊢ 𝑒 : #𝐴
Θ; Γ, #, Γ′ ⊢ ?𝑒 : 𝐴

Θ; Γ, # ⊢ 𝑒 : 𝐴
Θ; Γ ⊢ #𝑒 : #𝐴

Θ; Γ, 𝑥 : #>𝐴, # ⊢ 𝑒 : 𝐴
Θ ⊢ #𝐴 type

Θ; Γ ⊢ nfix 𝑥 : #𝐴 => 𝑒 : #𝐴

Θ; Γ ⊢ 𝑒1 : 𝐴
Θ; Γ ⊢ 𝑒2 : >Str(𝐴)

Θ; Γ ⊢ 𝑒1:::𝑒2 : Str(𝐴)

Θ; Γ ⊢ 𝑒1 : Str(𝐴)
Θ; Γ, 𝑥 : 𝐴, 𝑦 : >(Str(𝐴)) ⊢ 𝑒2 : 𝐵
Θ; Γ ⊢ let 𝑥:::𝑦 = 𝑒1 in 𝑒2 : 𝐵

Θ; Γ ⊢ 𝑒 : 𝐵
Θ; Γ ⊢ now 𝑒 : 𝐴 Until 𝐵 : 𝐴 Until 𝐵

Θ; Γ ⊢ 𝑒1 : 𝐴
Θ; Γ ⊢ 𝑒2 : @(𝐴 Until 𝐵)

Θ; Γ ⊢ wait 𝑒1 𝑒2 : 𝐴 Until 𝐵

Θ; Γ, #, Γ′ ⊢ 𝑒 : 𝐴 Until 𝐵

Θ; Γ, #, token-less-stable(Γ′), 𝑥 : 𝐵 ⊢ 𝑒1 : 𝐶
Θ; Γ, #, token-less-stable(Γ′), 𝑥′ : 𝐴, 𝑦 : @(𝐴 Until 𝐵), 𝑧 : @𝐶 ⊢ 𝑒2 : 𝐶

Θ; Γ, #, Γ′ ⊢ urec 𝑒 with|now 𝑥 => 𝑒1|wait 𝑥′ 𝑦, 𝑧 => 𝑒2 : 𝐶

Θ; Γ ⊢ 𝑒 : 𝐴[>(NFix 𝑥 −→ 𝐴)/𝑥]
Θ ⊢ NFix 𝑥 −→ 𝐴 type

Θ; Γ ⊢ into 𝑒 : NFix 𝑥 −→ 𝐴 : NFix 𝑥 −→ 𝐴

Θ; Γ ⊢ 𝑒 : NFix 𝑥 −→ 𝐴

Θ; Γ ⊢ out 𝑒 : 𝐴[>(NFix 𝑥 −→ 𝐴)/𝑥]

51



A.6 Evaluation Semantics

⟨𝑣;𝜎⟩ ⇓ ⟨𝑣;𝜎⟩

⟨𝑒1;𝜎⟩ ⇓ ⟨fun 𝑥 : 𝐴 => 𝑒′1;𝜎
′⟩

⟨𝑒2;𝜎′⟩ ⇓ ⟨𝑣;𝜎′′⟩
⟨𝑒′1 [𝑣/𝑥];𝜎

′′⟩ ⇓ ⟨𝑣′;𝜎′′′⟩
⟨𝑒1 𝑒2;𝜎⟩ ⇓ ⟨𝑣′;𝜎′′′⟩

⟨𝑒1;𝜎⟩ ⇓ ⟨𝑣;𝜎′⟩
⟨𝑒2;𝜎′⟩ ⇓ ⟨fun 𝑥 : 𝐴 => 𝑒′2;𝜎

′′⟩
⟨𝑒′2 [𝑣/𝑥];𝜎

′′⟩ ⇓ ⟨𝑣′;𝜎′′′⟩
⟨let 𝑥 = 𝑒1 in 𝑒2;𝜎⟩ ⇓ ⟨𝑣′;𝜎′′′⟩

⟨𝑒1;𝜎⟩ ⇓ ⟨𝑛;𝜎′⟩
⟨𝑒2;𝜎′⟩ ⇓ ⟨𝑚;𝜎′′⟩

𝑣 = 𝑛 + 𝑚

⟨𝑒1 + 𝑒2;𝜎⟩ ⇓ ⟨𝑣;𝜎′′⟩

⟨𝑒1;𝜎⟩ ⇓ ⟨𝑛;𝜎′⟩
⟨𝑒2;𝜎′⟩ ⇓ ⟨𝑚;𝜎′′⟩
𝑣 = max(0, 𝑛 − 𝑚)

⟨𝑒1 − 𝑒2;𝜎⟩ ⇓ ⟨𝑣;𝜎′′⟩

⟨𝑒1;𝜎⟩ ⇓ ⟨𝑛;𝜎′⟩
⟨𝑒2;𝜎′⟩ ⇓ ⟨𝑚;𝜎′′⟩

𝑣 = 𝑛 × 𝑚

⟨𝑒1 ∗ 𝑒2;𝜎⟩ ⇓ ⟨𝑣;𝜎′′⟩

⟨𝑒1;𝜎⟩ ⇓ ⟨𝑛;𝜎′⟩
⟨𝑒2;𝜎′⟩ ⇓ ⟨𝑚;𝜎′′⟩

𝑣 = ⌊𝑛/(max(1, 𝑚))⌋
⟨𝑒1 ∗ 𝑒2;𝜎⟩ ⇓ ⟨𝑣;𝜎′′⟩

⟨𝑒1;𝜎⟩ ⇓ ⟨𝑛;𝜎′⟩
⟨𝑒2;𝜎′⟩ ⇓ ⟨𝑚;𝜎′′⟩

𝑣 = 𝑛 mod (max(1, 𝑚))
⟨𝑒1%𝑒2;𝜎⟩ ⇓ ⟨𝑣;𝜎′′⟩

⟨𝑒1;𝜎⟩ ⇓ ⟨𝑛;𝜎′⟩
⟨𝑒2;𝜎′⟩ ⇓ ⟨𝑚;𝜎′′⟩

𝑣 = 𝑛^𝑚
⟨𝑒1^𝑒2;𝜎⟩ ⇓ ⟨𝑣;𝜎′′⟩

where 0^0 = 1

⟨𝑒;𝜎⟩ ⇓ ⟨𝑛;𝜎′⟩
𝑣 = 𝑛 + 1

⟨suc 𝑒;𝜎⟩ ⇓ ⟨𝑣;𝜎′⟩

⟨𝑒;𝜎⟩ ⇓ ⟨0;𝜎′⟩
⟨𝑒1;𝜎′⟩ ⇓ ⟨𝑣;𝜎′′⟩

⟨primrec 𝑒 with |0 => 𝑒1|suc 𝑥, 𝑦 => 𝑒2;𝜎⟩ ⇓ ⟨𝑣;𝜎′′⟩

⟨𝑒;𝜎⟩ ⇓ ⟨𝑛;𝜎′⟩ (with n ≠ 0)
⟨primrec 𝑛 − 1 with |0 => 𝑒1|suc 𝑥, 𝑦 => 𝑒2;𝜎′⟩ ⇓ ⟨𝑣;𝜎′′⟩

⟨𝑒2 [𝑛 − 1/𝑥, 𝑣/𝑦];𝜎′′⟩ ⇓ ⟨𝑣′;𝜎′′′⟩
⟨primrec 𝑒 with |0 => 𝑒1|suc 𝑥, 𝑦 => 𝑒2;𝜎⟩ ⇓ ⟨𝑣′;𝜎′′′⟩

⟨𝑒;𝜎⟩ ⇓ ⟨true;𝜎′⟩
⟨𝑒1;𝜎′⟩ ⇓ ⟨𝑣;𝜎′′⟩

⟨if 𝑒 then 𝑒1 else 𝑒2;𝜎⟩ ⇓ ⟨𝑣;𝜎′′⟩

⟨𝑒;𝜎⟩ ⇓ ⟨false;𝜎′⟩
⟨𝑒2;𝜎′⟩ ⇓ ⟨𝑣;𝜎′′⟩

⟨if 𝑒 then 𝑒1 else 𝑒2;𝜎⟩ ⇓ ⟨𝑣;𝜎′′⟩

⟨𝑒1;𝜎⟩ ⇓ ⟨𝑣1;𝜎′⟩
⟨𝑒2;𝜎′⟩ ⇓ ⟨𝑣2;𝜎′′⟩

𝑣 = 𝑣1&&𝑣2
⟨𝑒1 and 𝑒2;𝜎⟩ ⇓ ⟨𝑣;𝜎′′⟩

⟨𝑒1;𝜎⟩ ⇓ ⟨𝑣1;𝜎′⟩
⟨𝑒2;𝜎′⟩ ⇓ ⟨𝑣2;𝜎′′⟩

𝑣 = 𝑣1 | |𝑣2
⟨𝑒1 or 𝑒2;𝜎⟩ ⇓ ⟨𝑣;𝜎′′⟩

⟨𝑒;𝜎⟩ ⇓ ⟨𝑣;𝜎′⟩
𝑣′ =!𝑣

⟨not 𝑒;𝜎⟩ ⇓ ⟨𝑣′;𝜎′⟩

⟨𝑒1;𝜎⟩ ⇓ ⟨𝑣1;𝜎′⟩
⟨𝑒2;𝜎′⟩ ⇓ ⟨𝑣2;𝜎′′⟩

𝑣1 = 𝑣2

⟨𝑒1 == 𝑒2;𝜎⟩ ⇓ ⟨true;𝜎′′⟩

⟨𝑒1;𝜎⟩ ⇓ ⟨𝑣1;𝜎′⟩
⟨𝑒2;𝜎′⟩ ⇓ ⟨𝑣2;𝜎′′⟩

𝑣1 ≠ 𝑣2

⟨𝑒1 == 𝑒2;𝜎⟩ ⇓ ⟨false;𝜎′′⟩

⟨not (𝑒1 == 𝑒2);𝜎⟩ ⇓ ⟨𝑣;𝜎′⟩
⟨𝑒1! = 𝑒2;𝜎⟩ ⇓ ⟨𝑣;𝜎′⟩

52



⟨𝑒1;𝜎⟩ ⇓ ⟨𝑣1;𝜎′⟩
⟨𝑒2;𝜎′⟩ ⇓ ⟨𝑣2;𝜎′′⟩

⟨(𝑒1, 𝑒2);𝜎⟩ ⇓ ⟨(𝑣1, 𝑣2);𝜎′′⟩
⟨𝑒;𝜎⟩ ⇓ ⟨(𝑣1, 𝑣2);𝜎′⟩
⟨fst 𝑒;𝜎⟩ ⇓ ⟨𝑣1;𝜎′⟩

⟨𝑒;𝜎⟩ ⇓ ⟨(𝑣1, 𝑣2);𝜎′⟩
⟨snd 𝑒;𝜎⟩ ⇓ ⟨𝑣2;𝜎′⟩

⟨𝑒;𝜎⟩ ⇓ ⟨𝑣;𝜎′⟩
⟨inl 𝑒 : 𝐴;𝜎⟩ ⇓ ⟨inl 𝑣 : 𝐴;𝜎′⟩

⟨𝑒;𝜎⟩ ⇓ ⟨𝑣;𝜎′⟩
⟨inr 𝑒 : 𝐴;𝜎⟩ ⇓ ⟨inr 𝑣 : 𝐴;𝜎′⟩

⟨𝑒;𝜎⟩ ⇓ ⟨inl 𝑣 : 𝐴;𝜎′⟩
⟨𝑒1 [𝑣/𝑥];𝜎′⟩ ⇓ ⟨𝑣′;𝜎′′⟩

⟨match 𝑒 with|inl 𝑥 => 𝑒1|inr 𝑦 => 𝑒2;𝜎⟩ ⇓ ⟨𝑣′;𝜎′′⟩

⟨𝑒;𝜎⟩ ⇓ ⟨inr 𝑣 : 𝐴;𝜎′⟩
⟨𝑒2 [𝑣/𝑦];𝜎′⟩ ⇓ ⟨𝑣′;𝜎′′⟩

⟨match 𝑒 with|inl 𝑥 => 𝑒1|inr 𝑦 => 𝑒2;𝜎⟩ ⇓ ⟨𝑣′;𝜎′′⟩

⟨𝑒𝑖;𝜎𝑖−1⟩ ⇓ ⟨𝑣𝑖;𝜎𝑖⟩ (∀𝑖 = 1, . . . , 𝑛)
⟨[𝑒1, . . . , 𝑒𝑛];𝜎0⟩ ⇓ ⟨[𝑣1, . . . , 𝑣𝑛];𝜎𝑛⟩

⟨𝑒1;𝜎⟩ ⇓ ⟨𝑣;𝜎′⟩
⟨𝑒2;𝜎′⟩ ⇓ ⟨[𝑣1, . . . , 𝑣𝑛];𝜎′′⟩

⟨𝑒1::𝑒2;𝜎⟩ ⇓ ⟨[𝑣, 𝑣1, . . . , 𝑣𝑛];𝜎′′⟩

⟨𝑒1;𝜎⟩ ⇓ ⟨[𝑣1, . . . , 𝑣𝑛];𝜎′⟩
⟨𝑒2;𝜎′⟩ ⇓ ⟨[𝑤1, . . . , 𝑤𝑚];𝜎′′⟩

⟨𝑒1++𝑒2;𝜎⟩ ⇓ ⟨[𝑣1, . . . , 𝑣𝑛, 𝑤1, . . . , 𝑤𝑚];𝜎′′⟩

⟨𝑒;𝜎⟩ ⇓ ⟨[] : 𝐴;𝜎′⟩
⟨𝑒1;𝜎′⟩ ⇓ ⟨𝑣;𝜎′′⟩

⟨primrec 𝑒 with |[] => 𝑒1|𝑥::𝑦, 𝑧 => 𝑒2;𝜎⟩ ⇓ ⟨𝑣;𝜎′′⟩

⟨𝑒;𝜎⟩ ⇓ ⟨[𝑣1, . . . , 𝑣𝑛];𝜎′⟩ (with n ≠ 0)
⟨primrec [𝑣2, . . . , 𝑣𝑛] with |[] => 𝑒1|𝑥::𝑦, 𝑧 => 𝑒2;𝜎′⟩ ⇓ ⟨𝑣;𝜎′′⟩

⟨𝑒2 [𝑣1/𝑥, [𝑣2, . . . , 𝑣𝑛]/𝑦, 𝑣/𝑧];𝜎′′⟩ ⇓ ⟨𝑣′;𝜎′′′⟩
⟨primrec 𝑒 with |[] => 𝑒1|𝑥::𝑦, 𝑧 => 𝑒2;𝜎⟩ ⇓ ⟨𝑣;𝜎′′′⟩

53



𝑙 = alloc(𝜎)
𝜎 ≠ ·

⟨>𝑒;𝜎⟩ ⇓ ⟨𝑙;𝜎 + {𝑙 ↦→ 𝑒}⟩

𝑙 = alloc(𝜎)
𝜎 ≠ ·

⟨@𝑒;𝜎⟩ ⇓ ⟨𝑙;𝜎 + 𝑙 ↦→ 𝑒⟩

⟨𝑒; [𝑁⟩ ⇓ ⟨𝑙; [′
𝑁
⟩

⟨[′
𝑁
(𝑙); ([′

𝑁
✓[𝐿)⟩ ⇓ ⟨𝑣;𝜎′⟩

⟨<𝑒; ([𝑁✓[𝐿)⟩ ⇓ ⟨𝑣;𝜎′⟩

⟨𝑒1;𝜎⟩ ⇓ ⟨𝑣1;𝜎′⟩
⟨𝑒2;𝜎′⟩ ⇓ ⟨𝑣2;𝜎′′⟩

⟨𝑒1:::𝑒2;𝜎⟩ ⇓ ⟨into (𝑣1, 𝑣2) : 𝐴;𝜎′′⟩
1

⟨𝑒1;𝜎⟩ ⇓ ⟨𝑣1;𝜎′⟩
⟨𝑒2 [fst(out 𝑣1)/𝑥, snd(out 𝑣1)/𝑦];𝜎′⟩ ⇓ ⟨𝑣2;𝜎′′⟩

⟨let 𝑥:::𝑦 = 𝑒1 in 𝑒2;𝜎⟩ ⇓ ⟨𝑣2;𝜎′′⟩

⟨𝑒; ·⟩ ⇓ ⟨#𝑒′; ·⟩
⟨𝑒′;𝜎⟩ ⇓ ⟨𝑣;𝜎′⟩

𝜎 ≠ ·
⟨?𝑒;𝜎⟩ ⇓ ⟨𝑣;𝜎′⟩

⟨𝑒; ·⟩ ⇓ ⟨nfix 𝑥 : 𝐴 => 𝑒′; ·⟩
⟨𝑒′[#(>(?nfix 𝑥 : 𝐴 => 𝑒′))/𝑥];𝜎⟩ ⇓ ⟨𝑣;𝜎′⟩

𝜎 ≠ ·
⟨?𝑒;𝜎⟩ ⇓ ⟨𝑣;𝜎′⟩

⟨𝑒;𝜎⟩ ⇓ ⟨𝑣;𝜎′⟩
⟨now 𝑒;𝜎⟩ ⇓ ⟨now 𝑣;𝜎′⟩

⟨𝑒1;𝜎⟩ ⇓ ⟨𝑣1;𝜎′⟩
⟨𝑒2;𝜎′⟩ ⇓ ⟨𝑣2;𝜎′′⟩

⟨wait 𝑒1 𝑒2;𝜎⟩ ⇓ ⟨wait 𝑣1 𝑣2;𝜎′′⟩

⟨𝑒;𝜎⟩ ⇓ ⟨now 𝑣;𝜎′⟩
⟨𝑒1 [𝑣/𝑥];𝜎′⟩ ⇓ ⟨𝑣′;𝜎′′⟩

⟨urec 𝑒 with|now 𝑥 => 𝑒1|wait 𝑥′ 𝑦, 𝑧 => 𝑒2;𝜎⟩ ⇓ ⟨𝑣′;𝜎′′⟩

⟨𝑒;𝜎⟩ ⇓ ⟨wait 𝑣1 𝑣2;𝜎′⟩
𝑙 = alloc(𝜎′)

⟨𝑒2 [𝑣1/𝑥′, 𝑣2/𝑦, 𝑙/𝑧];𝜎′ + {𝑙 ↦→ (urec <𝑣2 with|now 𝑥 => 𝑒1|wait 𝑥′ 𝑦, 𝑧 => 𝑒2)}⟩ ⇓ ⟨𝑣′;𝜎′′⟩
⟨urec 𝑒 with|now 𝑥 => 𝑒1|wait 𝑥′ 𝑦, 𝑧 => 𝑒2;𝜎⟩ ⇓ ⟨𝑣′;𝜎′′⟩

⟨𝑒;𝜎⟩ ⇓ ⟨𝑣;𝜎′⟩
⟨into 𝑒;𝜎⟩ ⇓ ⟨into 𝑣;𝜎′⟩

⟨𝑒;𝜎⟩ ⇓ ⟨into 𝑣;𝜎′⟩
⟨out 𝑒;𝜎⟩ ⇓ ⟨𝑣;𝜎′⟩

1 Type ascription 𝐴 not important

54



A.7 Step Semantics

⟨𝑒; [✓⟩ ⇓ ⟨𝑣:::𝑤; [𝑁✓[𝐿⟩

⟨𝑒; [⟩ 𝑣
=⇒Safe ⟨<𝑤; [𝐿⟩

⟨𝑒; [✓⟩ ⇓ ⟨wait 𝑣 𝑤; [𝑁✓[𝐿⟩

⟨𝑒; [⟩ 𝑣
=⇒Lively ⟨<𝑤; [𝐿⟩

⟨𝑒; [✓⟩ ⇓ ⟨now 𝑣; [𝑁✓[𝐿⟩

⟨𝑒; [⟩ 𝑣
=⇒Lively ⟨HALT; [𝐿⟩

⟨𝑒; [⟩ 𝑣
=⇒Lively ⟨𝑒′; [′⟩

⟨𝑒; [; 1⟩ inl 𝑣
=⇒ Fair ⟨𝑒′; [′; 1⟩

⟨𝑒; [⟩ 𝑣
=⇒Lively ⟨𝑒′; [′⟩

⟨𝑒; [; 2⟩ inr 𝑣
=⇒ Fair ⟨𝑒′; [′; 2⟩

⟨𝑒; [⟩
(𝑣,𝑤)
=⇒Lively ⟨HALT; [′⟩

⟨𝑒; [; 1⟩ inr 𝑣
=⇒ Fair ⟨<𝑤; [′; 2⟩

⟨𝑒; [⟩
(𝑣,𝑤)
=⇒Lively ⟨HALT; [′⟩

⟨𝑒; [; 2⟩ inl 𝑣
=⇒ Fair ⟨out(<𝑤); [′; 1⟩

⟨𝑒; ([ + {𝑙 ↦→ 𝑣:::𝑙′})✓{𝑙′ ↦→ ()}⟩ ⇓ ⟨𝑣′:::𝑤; [𝑁✓([𝐿 + {𝑙′ ↦→ ()})⟩
𝑙′ = alloc([✓)

⟨𝑒; [; 𝑙⟩
𝑣/𝑣′
=⇒ISafe ⟨<𝑤; [𝐿; 𝑙′⟩

⟨𝑒; ([ + {𝑙 ↦→ 𝑣:::𝑙′})✓{𝑙′ ↦→ ()}⟩ ⇓ ⟨wait 𝑣′ 𝑤; [𝑁✓([𝐿 + {𝑙′ ↦→ ()})⟩
𝑙′ = alloc([✓)

⟨𝑒; [; 𝑙⟩
𝑣/𝑣′
=⇒ILively ⟨<𝑤; [𝐿; 𝑙′⟩

⟨𝑒; ([ + {𝑙 ↦→ 𝑣:::𝑙′})✓{𝑙′ ↦→ ()}⟩ ⇓ ⟨now 𝑣′; [𝑁✓([𝐿 + {𝑙′ ↦→ ()})⟩
𝑙′ = alloc([✓)

⟨𝑒; [; 𝑙⟩
𝑣/𝑣′
=⇒ILively ⟨HALT; [𝐿; 𝑙′⟩

⟨𝑒; [; 𝑙⟩
𝑣/𝑣′
=⇒ILively ⟨𝑒′; [′; 𝑙′⟩

⟨𝑒; [; 𝑙; 1⟩
𝑣/inl 𝑣′

=⇒ IFair ⟨𝑒′; [′; 𝑙′; 1⟩

⟨𝑒; [; 𝑙⟩
𝑣/𝑣′
=⇒ILively ⟨𝑒′; [′; 𝑙′⟩

⟨𝑒; [; 𝑙; 2⟩
𝑣/inr 𝑣′

=⇒ IFair ⟨𝑒′; [′; 𝑙′; 2⟩

⟨𝑒; [; 𝑙⟩
𝑣/(𝑣′,𝑤)
=⇒ ILively ⟨HALT; [′; 𝑙′⟩

⟨𝑒; [; 𝑙; 1⟩
𝑣/inr 𝑣′

=⇒ IFair ⟨<𝑤; [′; 𝑙′; 2⟩

⟨𝑒; [; 𝑙⟩
𝑣/(𝑣′,𝑤)
=⇒ ILively ⟨HALT; [′; 𝑙′⟩

⟨𝑒; [; 𝑙; 2⟩
𝑣/inr 𝑣′

=⇒ IFair ⟨out(<𝑤); [′; 𝑙′; 1⟩

55



A.8 Fundamental Theorems of Eva

A.8.1 Safe Interpreter

If ·; · ⊢ 𝑒 : #Str(𝐴), then there is an infinite sequence of reduction steps:

⟨?𝑒; ∅⟩
𝑣1
=⇒Safe ⟨𝑒1; [1⟩

𝑣2
=⇒Safe ⟨𝑒2; [2⟩

𝑣3
=⇒Safe . . .

Moreover, if 𝐴 is a value type, then ·; · ⊢ 𝑣𝑖 : 𝐴 for all 𝑖 ≥ 1.

A.8.2 Lively Interpreter

If ·; · ⊢ 𝑒 : #(𝐴 Until 𝐵), then there is a finite sequence of reduction steps:

⟨?𝑒; ∅⟩
𝑣1
=⇒Lively ⟨𝑒1; [1⟩

𝑣2
=⇒Lively ⟨𝑒2; [2⟩

𝑣3
=⇒Lively . . .

𝑣𝑛
=⇒Lively ⟨HALT; [𝑛⟩

Moreover, if 𝐴 and 𝐵 are value types, then ·; · ⊢ 𝑣𝑖 : 𝐴 for all 0 < 𝑖 < 𝑛, and ·; · ⊢ 𝑣𝑛 : 𝐵.

A.8.3 Fair Interpreter

If ·; · ⊢ 𝑒 : #Fair(𝐴, 𝐵), then there is an infinite sequence of reduction steps:

⟨out(?𝑒); ∅; 1⟩
𝑣1
=⇒Fair ⟨𝑒1; [1; 𝑝1⟩

𝑣2
=⇒Fair ⟨𝑒2; [2; 𝑝2⟩

𝑣3
=⇒Fair . . .

such that for each 𝑝 ∈ {1, 2}, we have 𝑝𝑖 = 𝑝 for infinitely many 𝑖 ≥ 1. Moreover, if 𝐴 and 𝐵 are
value types, then ·; · ⊢ 𝑣𝑖 : 𝐴 + 𝐵 for all 𝑖 ≥ 1.

A.8.4 ISafe Interpreter

If ·; · ⊢ 𝑒 : #(Str(𝐴) → Str(𝐵)), then there is an infinite sequence of reduction steps:

⟨(?𝑒) (<𝑙0); ∅; 𝑙0⟩
𝑣1/𝑣′1
=⇒ISafe ⟨𝑒1; [1; 𝑙1⟩

𝑣2/𝑣′2
=⇒ISafe ⟨𝑒2; [2; 𝑙2⟩

𝑣3/𝑣′3
=⇒ISafe . . .

Moreover, if 𝐵 is a value type, then ·; · ⊢ 𝑣′
𝑖
: 𝐵 for all 𝑖 ≥ 1.

A.8.5 ILively Interpreter

If ·; · ⊢ 𝑒 : #(Str(𝐴) → (𝐵 Until 𝐶)), then there is a finite sequence of reduction steps:

⟨(?𝑒) (<𝑙0); ∅; 𝑙0⟩
𝑣1/𝑣′1
=⇒ILively ⟨𝑒1; [1; 𝑙1⟩

𝑣2/𝑣′2
=⇒ILively ⟨𝑒2; [2; 𝑙2⟩

𝑣3/𝑣′3
=⇒ILively . . .

𝑣𝑛/𝑣′𝑛
=⇒ ILively ⟨HALT; [𝑛; 𝑙𝑛⟩

Moreover, if 𝐵 and 𝐶 are value types, then ·; · ⊢ 𝑣′
𝑖
: 𝐵 for all 0 < 𝑖 < 𝑛, and ·; · ⊢ 𝑣′𝑛 : 𝐶.

A.8.6 IFair Interpreter

If ·; · ⊢ 𝑒 : #(Str(𝐴) → Fair(𝐵,𝐶)), then there is an infinite sequence of reduction steps:

⟨out((?𝑒) (<𝑙0)); ∅; 𝑙0; 1⟩
𝑣1/𝑣′1
=⇒IFair ⟨𝑒1; [1; 𝑙1; 𝑝1⟩

𝑣2/𝑣′2
=⇒IFair ⟨𝑒2; [2; 𝑙2; 𝑝2⟩

𝑣3/𝑣′3
=⇒IFair . . .

such that for each 𝑝 ∈ {1, 2}, we have 𝑝𝑖 = 𝑝 for infinitely many 𝑖 ≥ 1. Moreover, if 𝐵 and 𝐶 are
value types, then ·; · ⊢ 𝑣′

𝑖
: 𝐵 + 𝐶 for all 𝑖 ≥ 1.

56



Appendix B

Eva Code Samples

B.1 Ackermann Function
def ackermann # m:Nat n:Nat =
let iter f:Nat -> Nat n’:Nat =
(primrec n’ with
| 0 => f 1
| suc _, rest => f rest

) in
(primrec m with
| 0 => (fun x:Nat => suc x)
| suc _, rest => iter rest) n

57



B.2 Quicksort Function

def length{a} # xs:List(a) =
primrec xs with
| [] => 0
| _::_, rest => 1+rest

def leq # x:Nat y:Nat =
(x - y) == 0

def filter{a} # f:(a->Bool) xs:List(a) =
primrec xs with
| [] => []:List(a)
| x::_, rest =>
if f x
then x::rest
else rest

def partition{a} # f:(a->Bool) xs:List(a) =
(?filter{a} f xs,
?filter{a} (fun k:a => not (f k)) xs)

def quickSortHelper # x:Nat l:List(Nat) =
let f n:Nat = n `?leq` x in
?partition{Nat} f l

def quickSort # l:List(Nat) =
let len = ?length{Nat} l in
let q n:Nat= (
primrec n with
| 0 => (fun l:List(Nat) => []:List(Nat))
| suc _, y =>
fun l:List(Nat) =>
primrec l with
| [] => []:List(Nat)
| u::v, _ =>
let (small,large) =
?quickSortHelper u v in
let one = y small in
let two = u::y large in
one++two

) in
(q len) l

58



Appendix C

Project Proposal

59



Type Systems for
Functional Reactive Programming

2378F

Project Originators: 2378F and Alan Mycroft

Project Supervisors: Alan Mycroft

Director of Studies: John Fawcett

Overseers: Robert Mullins and Marcelo Fiore

Introduction

Functional Reactive Programming (FRP) is a common programming paradigm
for implementing asynchronous dataflow models, such as graphical user interfaces
and control software in vehicles. FRP languages aim to provide a high level of
abstraction while allowing the program to be run efficiently at the hardware level
after compilation. They also bring known benefits of functional programming to
reactive programming, such as being less error-prone and easier to reason about.

In most FRP languages, signals (time-varying values) are represented in the form
of infinite lazy-lists called streams, where elements of the list denotes how the value
changes in different time steps, with the head of the list specifically denoting value
in the current time step. However, valid programs that operate on streams do not
make sense when we interpret the streams as signals. Consider the following three
functions in pseudo code, all three taking a signal in the form of a stream as input
and returning one as output:

f x = 0::x

g x = x

h (x::xs) = xs

A traditional ML-like type system would type check and accept all three functions.
f is a function that delays a stream by one time step by padding the beginning
with a 0, g is the identity function, and h advances the stream by one time step.

1



However, when we interpret the stream as a signal, h is be considered invalid as it
is non-causal and non-generative. Here, causal means that current behavior cannot
depend on future inputs and generative means that a value is eventually produced
at each time step as long as the program has not halted. At each time step, h is
unable to produce an output value at each time step without knowing the future
input value in the next time step, thus representing a non-implementable reactive
function.

Ideally, we want a type system for FRP languages that not only identifies a subset
of valid programs (so we can only implement classically well-typed programs that
are causal and progressive), but also allows us to reason about the associated
semantics properties of programs based on its type. The latter condition is useful
as reasoning about safety and liveness properties of a reactive system is often
critical to verifying its correctness.

Krishnaswami [Kri13] proposed a FRP calculus that ensures productivity (a type of
safety property) by introducing modal operators for guarded recursion to the type
system. Cave et al. [CFPP14] then proposed a similar FRP calculus that satisfies
liveness properties (like fairness) by introducing operators from linear temporal
logic. However, the operators introduced in both calculus are not compatible with
each other, and designing a FRP calculus with both safety and liveness guarantees
is non-trivial.

Recently, Bahr [BGM21] proposed a theoretical calculus, Lively RaTT, that suc-
ceeded in combining the operators from the two above logic systems, by considering
one to be a sub-modality of the other. Its semantics rules out non-causal programs
by construction and asserts safety and liveness properties of a type-checked pro-
gram with respect to its type. Depending on the type of a program, RaTT can
either directly evaluates it into a value in a single time step (evaluation semantics)
or performs a series of computation over a (possibly infinite) sequence of time
steps (step semantics). Bahr also showed that RaTT could be implemented with
a two heap-model (where time-based values are allocated in one of the two heaps
interchangeably in each time step, and garbage-collected immediately after two
time-steps), thus eliminating implicit space leaks by construction.

In this project, I will design and implement a FRP language, provisionally dubbed
Eva. Eva will be a programming variant of RaTT, but her syntax may be refined to
simplify the type checking algorithm and provide a more convenient programming
experience. The core deliverables include implementing the parser, type-checker
and abstract syntax tree (AST) interpreter. All these tools will be implemented
in Haskell, but Eva’s syntax will use features from both Haskell’s and OCaml’s
syntax. For evaluation, I will consider Eva’s soundness, expressiveness and runtime
efficiency.

2



Starting Point

I have no prior experience with implementing parsers, type-checkers, interpreters
or functional programming languages. I have studied Semantics of Programming
Languages, Compiler Construction and Computation Theory, which will be rele-
vant in this project. I have read relevant papers on RaTT-like calculi during the
summer though no project code was written before the start of Michaelmas term.

Success Criteria

1. Design the syntax and semantics of Eva, taking inspiration from Lively RaTT

2. Implement the parser, type-checker and AST interpreter with the two-heap
model

3. Evaluate the soundness, expressiveness and runtime efficiency of Eva

Evaluation

The nature of this project does not lend itself to quantitative evaluation easily.
Instead, a collection of qualitative evaluation will be used to evaluate multiple
aspects of Eva.

1. Guarantees Evaluation: I will test Eva against a corpus of programs found
in relevant academic papers, Haskell stream libraries or handcrafted myself.
I will present a collection of type-valid programs based on safety and liveness
properties together with a suite of erroneous programs that violates safety
and liveness properties and evaluate whether they are accepted by the type
system.

2. Expressiveness Evaluation: I will evaluate the expressiveness of Eva’s com-
putability power by implementing programs of various computability power,
e.g. Turing-complete or primitive recursive. I will also investigate Eva’s
limitations by considering whether there are natural programs outside its
scope.

3. Leaks Evaluation: I will present a suite of programs with space and time
leaks obtained from relevant academic papers or handcrafted myself, test-
ing whether or not they are accepted by the type checker and, if accepted,
investigate their run-time behaviour.

3



Possible Extensions

1. Add syntactic sugar

2. Provide support for modular programming

3. Provide support for streams representing interactive IO

4. Enhance the type system e.g. enriching the rules of the type system, imple-
menting type inference

5. Implement a compiler that compiles a subset of the language to a netlist
representation

Resource Declaration

I will be mainly using my personal laptop (Xiaomi Notebook Pro – 1.80 GHz, 16
GB RAM) for software development. I will be using the Computing Service’s MCS
as backup in case my laptop breaks down. In addition, I will also perform daily
backups with Git version control and Google Drive.

Timeline and Milestone

Week 1–2 (21st Oct – 3rd Nov):

Design the syntax and semantics for Eva based on Lively RaTT

Practice using Haskell by writing small programs

Week 3–4 (4th Nov – 17th Nov):

Implement the parser

Milestone: Given a text file of a valid Eva program, generate the AST

Week 5–6 (18th Nov – 1st Dec):

Implement the type checker

Milestone: ASTs can be type-checked in a standard recursive-directed manner

4



Week 7 – 8 (2nd Dec – 15th Dec):

Implement the interpreter with a two-heap model

Milestone: Eva programs can be run using the interpreter

Week 9–10 (16th Dec – 29th Dec):

Prepare test cases for the project evaluation

Milestone: Implement programs for all three subsections of the evaluation

Week 11 – 12 (30th Dec – 12th Jan):

Slack time.

Finish core deliverables

Milestone: Pass the success criteria

Week 13–14 (13th Jan – 26th Jan):

Work on extensions

Week 15–16 (27th Jan – 9th Feb):

Continue working on extensions

Write up section 1 and 2 of the dissertation

Write up progress report and prepare presentation

Milestone(3rd Feb): Submit progress report

Milestone: Finish Introduction and Preparation chapter

Week 17–18 (10th Feb – 23rd Feb):

Continue working on extensions

Write up section 3 of the dissertation

Milestone: Finish Implementation chapter

5



Week 19–20 (24th Feb – 9th Mar):

Continue working on extensions

Write up section 4 of the dissertation

Milestone: Finish evaluation chapter

Week 21–22 (10th Mar – 23rd Mar):

Slack time

Week 23–24 (24th Mar – 6th Apr):

Finish Dissertation and send to supervisor for feedback

Milestone (1st April): Submit first draft of the dissertation to supervisor and
DoS

Week 25–26 (7th Apr – 20th Apr):

Wait for supervisor and DoS’ comments and make corrections

Milestone: Submit second draft of the dissertation to supervisor and DoS

Week 27–29 (21st Apr – 11th May):

Make final corrections and submit dissertation

Milestone: Submit final dissertation

References

[BGM21] Patrick Bahr, Christian Uldal Graulund, and Rasmus Ejlers Møgelberg.
Diamonds are not forever: Liveness in reactive programming with
guarded recursion. Proc. ACM Program. Lang., 5(POPL), January
2021.

[CFPP14] Andrew Cave, Francisco Ferreira, Prakash Panangaden, and Brigitte
Pientka. Fair reactive programming. In Proceedings of the 41st ACM

6



SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’14, page 361–372, New York, NY, USA, 2014. Asso-
ciation for Computing Machinery.

[Kri13] Neelakantan R. Krishnaswami. Higher-order reactive programming
without spacetime leaks. In International Conference on Functional
Programming (ICFP), September 2013.

7


	Introduction
	Preparation
	Type Systems
	Functional Reactive Programming
	Language Primitives for FRP Properties
	Causality and Nakano's Fixed-Point Operator
	Generativity and Higher-Order Primitive Recursion
	Eliminating Space Leaks and Stable Types

	Safety and Liveness
	Combining Safety and Liveness in RaTT
	Starting Point
	Requirements Analysis and Code Licensing

	Implementation
	Designing the Syntax
	Designing the Type System
	Representing Nat and Arithmetic Operations 
	Bool and List
	Parametric Polymorphism
	Generalizing RaTT's Typing Rules

	Eva's Features
	Type Synonyms
	Modular Programming
	Lustre as a Domain-Specific Language

	Eva's Abstract Syntax for Expressions
	Repository Overview
	Parser
	Program Analyzer
	Type-Checker
	Type Synonym Creator
	Module Importer
	Lust4Eva

	Interpreters
	Execution Options
	Implementation Summary

	Evaluation
	Soundness
	Causality
	Generativity
	Non-Space-Leaking

	Theoretical Power
	Computability
	Time Complexity

	Usability
	One-Step Programs
	Productive Programs 
	Terminating Programs
	Fair Programs

	Evaluation Summary

	Conclusion
	Summary
	Lessons Learned
	Future Work

	Bibliography
	Eva's Specifications
	Abstract Syntax
	Definitions
	Judgement for Types
	Judgement for Context
	Typing Rules
	Evaluation Semantics
	Step Semantics
	Fundamental Theorems of Eva
	Safe Interpreter
	Lively Interpreter
	Fair Interpreter
	ISafe Interpreter
	ILively Interpreter
	IFair Interpreter


	Eva Code Samples
	Ackermann Function
	Quicksort Function

	Project Proposal

